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Preface

European Young Statisticians Meetings are organized every two years under the
auspices of the European Regional Committee of the Bernoulli Society for Math-
ematical Statistics and Probability. The aim is to provide a scientific forum for
the next generation of European researchers in probability theory and statistics.
It represents an excellent opportunity to promote new collaborations and interna-
tional cooperation. Participants are less than 30 years old or have 2 to 8 years of
research experience, and are invited on the basis of their scientific achievements, in
a uniformly distributed way in Europe (at most 2 participants per country). The
International Organizing Committee (IOC) is responsible for their selection.

There were thirty two European countries participating at the 22nd EYSM. The
scientific part of the Conference was organized as follows:

• [-] five eminent scientists from the field of mathematical statistics and proba-
bility gave 60-minutes keynote lectures

• [-] fifty seven invited young scientists gave 20-minutes lectures.

The topics presented include, but are not limited to:

• Applied statistics in biology, medicine, etc.

• Bayesian inference

• Change-point detection

• Characterizations of probability distributions

• Extreme and record value theory

• Functional statistics

• Goodness-of-fit testing

• High-dimensional statistics

• Markov chain Monte Carlo (MCMC) methods
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• Regression models

• Robust estimation

• Spatial statistics

• Stochastic processes

• Survival analysis

• Time series analysis

More information about the Conference, such as the scientific program, abstracts
of all given lectures, the list of participants together with their affiliations and
contact information, is available in the Book of Abstracts, and at the Conference
website https://www.eysm2021.panteion.gr.

These Proceedings contain short papers that went through the peer review pro-
cess organized by the IOC, in the way that the IOC representatives personally acted
as a referee or proposed reviewers for papers of participants they invited.

We would like to thank the European Regional Committee of the Bernoulli
Society for giving us the opportunity to organize this lovely event. We are also
thankful to the members of the International Organizing Committee for selecting
prominent young scientists to attend this conference, as well as to the reviewers
of the papers published in the conference proceedings. We also appreciate very
much the help of the administrative staff of the Panteion University of Social and
Political Sciences. A special thanks goes to our Sponsors for their assistance. Last,
but not least, we thank all Keynote Speakers and Young Participants for providing
an excellent scientific program, and great vibes that made this event special giving
invited young scientists the opportunity to present their recent research results,
exchange experience, gain new knowledge and establish contacts, in the hope that
this event will be a driving force for their future academic achievements.

Athens, September 2021 Local Organizing Committee

https://www.eysm2021.panteion.gr/publications.html
 https://www.eysm2021.panteion.gr
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Different ordering behavior with respect to two
closely related stochastic orders

Idir Arab,1 Milto Hadjikyriakou2, Paulo Eduardo Oliveira1 and Beatriz
Santos1∗

1CMUC, Department of Mathematics, University of Coimbra, Portugal
2University of Central Lancashire, Cyprus

Abstract: The lifetime of complex systems with heterogeneous components is
modelled by distributions depending on several parameters. We exhibit a few ap-
plications regarding the ordering of these types of systems with respect to two closely
related stochastic orders, namely the star and convex transform orders. Despite the
closeness of these orders, different ordering behaviors are obtained.

Keywords: Star-shaped order, convex transform order, parallel systems, series
systems.

AMS subject classification: 60E15, 60E05, 62N05.

1 Introduction

The problem of comparing the ageing rates of lifetime of complex systems is ad-
dressed by studying two popular notions of stochastic ordering, the convex and
star-shaped transform orders. These are closely related, however there are several
significant models for which the ageing behavior does not coincide. In this paper,
based on previous characterizations for these orderings, we exhibit a few applications
with contrasting ageing patterns, depending on the reference ordering criterion.

Let F denote the family of distributions vanishing at 0, and X be a nonnega-
tive random variable with distribution function FX ∈ F , density function fX , and
survival function FX . Recall the relevant definitions:

Definition 1. Let X and Y be two nonnegative random variables with distribution
functions FX , FY ∈ F , respectively.

1. The random variable X is said to be smaller than Y in the star-shaped order,
denoted by X ≤∗ Y , if F−1

Y (FX(x)) is star-shaped, i.e., 1
xF
−1
Y (FX(x)) is

increasing with x > 0.

2. The random variable X is said to be smaller than Y in the convex transform
order, denoted by X ≤c Y , if F−1

Y (FX(x)) is convex, x > 0.

∗Corresponding author: b14796@gmail.com
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The verification of the star-shapedness and convexity of the desired functions
can be technically difficult. In Marshall and Olkin [4] or Shaked and Shantikumar
[6], a general characterization of the above transform order relations, based on a
sign variation technique, may be found.

Theorem 1. Let X and Y be nonnegative random variables with distribution func-
tions FX , FY ∈ F .

1. X ≤∗ Y if and only if, for every real number a, FX(x) − FY (ax) changes
sign at most once, and if the sign change occurs it is in the order “−,+” as
x traverses from 0 to +∞.

2. X ≤c Y if and only if, for every real numbers a and b, FX(x) − FY (ax + b)
changes sign at most twice, and if the sign change occurs twice it is in the
order “+,−,+” as x traverses from 0 to +∞.

It is obvious from Theorem 1, that the convex transform and star-shaped order
are related. In fact, the convex transform order implies the star-shaped order. The
main difference between these two orders, since they both capture the notion of a
system ageing faster than another, relies on the requirement that the systems under
comparison start operating at the same time or not.

An alternative characterization to solve the technical difficulties for the star-
shaped order, well adapted for distributions for which we do not have an explicit
description of the distribution functions, was proved by Saunders and Moran [5].
The following extension for families depending on multidimensional parameters was
proved by Arab et al. [2].

Theorem 2. Let {Fλ : λ ∈ I ⊆ Rn} be a family of distributions such that Fλ ∈ F
and has a density function fλ, which does not vanish on any subinterval of its sup-
port. Let µ ∈ I, v = (v1, v2, . . . , vn) ∈ Rn and J ⊆ I. Then Fλt ≤∗ Fλt′ , for every

λt, λt′ ∈ L(µ,v)∩J , for t ≤ t′, if and only if R(x) = 〈v,∇Fλ(x)〉
xfλ(x) is decreasing with x >

0, for every λ ∈ L(µ,v)∩J , where L(µ,v) = {λt ∈ I ⊆ Rn : λt = µ+tv, t ∈ R}, ∇Fλ(x)
is the gradient of Fλ(x) with respect to the parameter λ and 〈v,∇Fλ(x)〉 denotes
the inner product between v and ∇Fλ(x).

Remark 1. The argument used for the proof of Theorem 2 reduces the variation of
the parameters to moving along a line, hence converting the n-dimensional variation
into a one dimensional problem, which is handled using the Saunders and Moran’s
[5] characterization of the star-shaped order. Note that, we may replace the line
L(µ,v) by any other parametric curve, leading to an obvious extension of Theorem
2.

2 Parallel systems with dependent components

In Proposition 1, a parallel system with dependent exponentially distributed com-
ponents is compared in the sense of the star-shaped order, with a parallel system
that consists of its independent duplicates. Arab et al. [1] proved that these sys-
tems are non-comparable with regard to the convex transform order. We assume
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that the joint distribution of the dependent components (X1, . . . , Xn) follows an
n-dimensional FGM (Farlie-Gumbel-Morgenstern, cf. [3]) distribution, that is

F(X1,...,Xn)(x1, . . . , xn) =

n∏
i=1

F (xi)

1 +
∑

1≤j<k≤n

ajkF (xj)F (xk)

 . (1)

The distribution function of X(n) = max(X1, X2, . . . , Xn) is given by

Fc(x) = Fn(x)(1 + cF
2
(x)), (2)

where c =
∑

1≤j<k≤n ajk ∈ [−1, 1]. Note that the constant c describes the strength
of dependence among the random variables, while its sign reveals the direction of
the dependence, i.e., if c > 0 (c < 0), the components are positively (negatively)
dependent. In the following result, the star-shaped comparability follows from the
characterization given by Saunders and Moran in [5].

Proposition 1. Let X1, . . . , Xn be independent exponentially distributed random
variables with hazard rate λ > 0 and let Y1, . . . , Yn be exponentially distributed ran-
dom variables with hazard rate λ > 0, such that their joint distribution is described
by the FGM model defined in (1), with F (x) = 1 − e−λx. Then X(n) and Y(n) are
not comparable with respect to the convex transform order. If 0 < c < n

n+2 , then
X(n) ≤∗ Y(n).

3 Complex systems with heterogeneous compo-
nents

In what follows, we present cases of complex systems with heterogeneous com-
ponents for which, although the convex transform ordering fails, the star-shaped
ordering is established as it is derived from Theorem 2.

Arab et al. [1] proved that two parallel systems with independent and Weibull
non-identically distributed lifetime components are not comparable w.r.t. the con-
vex transform order. The following proposition shows a different ordering behavior
when considering ordering w.r.t. the star-shaped order.

Proposition 2. Let X1, . . . , Xn and Y1, . . . , Yn be vectors of independent random
variables with Weibull distributions with common shape parameter α > 0 and scale
parameters 0 < λ1 ≤ · · · ≤ λn and 0 < θ1 ≤ · · · ≤ θn, respectively.

1. If θi
θj
≤ λi

λj
, for i < j, i, j = 1, . . . , n, then X(n) ≤∗ Y(n).

2. If α ≥ 1, λ1 < λ2 ≤ · · · ≤ λn, θ1 < θ2 ≤ · · · ≤ θn, then X(n) and Y(n) are not
comparable with respect to the convex transform order.

A similar result to Proposition 2 may be established for parallel systems with
Gamma distributed lifetime components.
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Proposition 3. Let X1, . . . , Xn and Y1, . . . , Yn be vectors of independent random
variables with Gamma distributions with common shape parameter α > 0 and scale
parameters 0 < λ1 ≤ · · · ≤ λn and 0 < θ1 ≤ · · · ≤ θn, respectively.

1. If α > 1 and θi
θj
≤ λi

λj
, for i < j, i, j = 1, . . . , n, then X(n) ≤∗ Y(n).

2. If λ1 < λ2 ≤ · · · ≤ λn, θ1 < θ2 ≤ · · · ≤ θn and λn = θn, then X(n) and Y(n)

are not comparable with respect to the convex transform order.

Example 1. In Proposition 2 (resp., Proposition 3) assume that n = 2, and λ1

and λ2 fixed. Choosing θ1 and θ2 above the line that goes through (0, 0) and has
slope λ2

λ1
, we may define a system that ages slower w.r.t. the star-shaped order than

the system whose distribution depends on the parameters initially fixed. According
to Propostion 2 these systems are not comparable w.r.t. the convex transform
order. Taking into account Proposition 3, the same conclusion regarding the convex
transform order yields, if θ2 is also chosen so that θ2 = λ2.

Again, the ordering behavior found for the star-shaped order contrasts with
the one obtained by Arab et al. [1] in Proposition 3, where non-comparability,
w.r.t. the convex transform order, was proved for parallel systems with Gamma
distributed components. These authors also established non-comparability w.r.t.
the same ordering notion between series systems when components have expo-
nentiated exponential distributions (cf. Proposition 4 in Arab et al. [1]) as de-
scribed below. The following result states a different ordering behavior when con-
sidering the star-shaped order. Given X1, . . . , Xn random variables, we denote by
X(1) = min(X1, . . . , Xn).

Proposition 4. Let X1, . . . , Xn be independent random variables where Xi has
distribution function Fi(x) = (1 − e−λx)αi , for λ, αi > 0, i = 1, . . . , n and α1 ≤
α2 ≤ · · · ≤ αn. Let Y1, . . . , Yn be independent random variables such that Yi has
distribution function Gi(x) = (1− e−λx)βi , for βi > 0, i = 1, . . . , n and β1 ≤ β2 ≤
· · · ≤ βn.

1. If βi
βj
≥ αi

αj
, for i < j, i, j = 1, . . . , n, X(1) ≥∗ Y(1).

2. If
∏n
i=1 αi =

∏n
i=1 βi, then X(1) and Y(1) are not comparable with respect to

the convex transform order.

Example 2. In the assumptions of Proposition 4, for n = 2, given α1 and α2 fixed,
we may choose β1 and β2 between the lines that goes through (0, 0) and have slopes
1 and α2

α1
, to define a system that ages slower w.r.t. the star-shaped order than the

system whose distribution depends on the parameters initially fixed. However, the
systems considered are not comparable w.r.t. the convex order, if β2 and β1 are
also chosen to satisfy β2 = α1α2

β1
.

Remark 2. The direction of the star-shaped ordering in Propositions 2, 3 and 4 may
be reversed, if the inequalities assumed for the parameters are also reversed.
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4 Conclusions

Arab et al. [1] established non-comparison results regarding the convex transform
order relation, within parallel and series systems depending on a large number of
parameters. However, the characterizations provided were not sufficient to draw
any conclusions with regard to star-shaped order for the same type of systems. The
result proved by Arab et al. in [2], gives a new criterion for the star-shaped order
to hold between families of distributions indexed by multidimensional parameters.
Based on the new criterion, we obtain a different ordering behavior from the one
found when considering ordering w.r.t. the convex transform order, for the referred
systems.

Since the star-order implies other stochastic orders, such as the second stochastic
dominance and Lorenz orders (cf. Shaked and Shantikumar [6]), which have several
applications in economics, we may conclude that the results remain true for the
aforementioned orders.

Acknowledgements: The authors IA, PEO, and BS are partially supported by the
Centre for Mathematics of the University of Coimbra - UIDB/00324/2020, funded
by the Portuguese Government through FCT/MCTES. BS was also supported by
FCT, through the grant PD/BD/150459/2019, co-financed by the European Social
Fund.
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About one nonparametric estimate of the
Bernoulli regression function

Petre Babilua1∗

1Faculty of Exact and Natural Sciences, Department of Mathematics, Ivane
Javakhishvili Tbilisi State University,

University Str., 3 Tbilisi 0143, Georgia

Abstract: The estimate for the Bernoulli regression function is constructed using
the Bernstein polynomial. The question of its consistency and asymptotic normality
is studied. Testing hypothesis is constructed on the form of the Bernoulli regression
function.

Keywords: Bernstein polynomial, Bernoulli regression function, consistency, test-
ing hypothesis

AMS subject classification: 62G10, 62G20.

1 Introduction

Our results obtained for an estimate of the Bernoulli regression function are new.
For us the existence of similar results for the Bernoulli regression function is un-
known. We were the first to introduce Bernstein polynomials as an estimate of the
Bernoulli regression function and moreover, the estimate created by us is free from
the boundary effect, which motivated us to study such kind of estimates. Note
that the kernel-type estimates for the Bernoulli regression function, which we have
considered in [7], do not have such a good property.

Let a random variable Y take two values 1 and 0 with probabilities p (“success”)
and 1 − p (“failure”). Assume that the probability of “success” p is the function
of an independent variable x ∈ [0, 1], i.e. p = p(x) = P(Y = 1 | x) [1, 2, 3, 4].
Assume that xk = k

n , k = 0, . . . , n, are the points of division of the interval [0, 1]
and we have Yi, i = 0, . . . , n, which are independent Bernoulli random variables
with P(Yi = 1 | xi) = p(xi), P(Yi = 0 | xi) = 1 − p(xi). The problem consists in
estimating a function p(x), x ∈ [0, 1], by means of the sampling Y0, Y1, . . . , Yn. A
problem like this one arises, for instance, in biology [1, 3, 4], also when studying
corrosion processes [5], and so on.

As an estimate for p(x) let us consider the following statistic

p̂n(x) =

n∑
k=0

Ykbk(n, x), (1)

∗Corresponding author: petre.babilua@tsu.ge
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where bk(n, x) =
(
n
k

)
xk(1 − x)n−k, k = 0, . . . , n is a binomial distribution with

probability of “success” p, x ∈ (0, 1).
Note that

Ep̂n(x) = Bn(x) =

n∑
k=0

p
(k
n

)
bk(n, x),

where Bn(x) is a Bernstein polynomial of order n of the function p(x). It is well
known that if p(x) is continuous on [0, 1], then lim

n→∞
Bn(x) = p(x) uniformly with

respect to x ∈ [0, 1]. Moreover, the order of bias Ep̂n(x) − p(x) is established
from the result given in Lorentz’ monograph [6, Section 1.6]. According to Lorentz
monograph, following assertion is true.

Lemma 1. Let p(x), x ∈ [0, 1] have a bounded derivative of second order (we denote
the class of such functions by W [0, 1]). Then

(a)

Ep̂n(x)− p(x) = O
( 1

n

)
(2)

uniformly with respect to x ∈ [0, 1].

(b) Let p′′(x) satisfies the Lipshitz condition, i.e. there exists c > 0 such that
|p′′(x)− p′′(y)| ≤ c|x− y| for all x, y ∈ [0, 1], then

Ep̂n(x) = p(x) + n−1x(1− x)p′′(x)2−1 +O(n−3/2)

uniformly with respect to x ∈ [0, 1].

Moreover, the estimate p̂n(x) is free from the boundary effect, which motivates
us to study estimates like (1) for the Bernoulli regression function p(x). Note that
the kernel-type estimates of the function p(x), which we have considered in [7], do
not have such a good property.

Theorem 1. Let p(x) ∈W [0, 1]. Then, for x ∈ (0, 1)

10. p̂n(x) is a consistent estimate of p(x).

20.
√
n (p̂n(x)− p(x))σ−1(x)

d−→ N(0, 1),

σ2(x) = p(x)(1− p(x))
[
4πx(1− x)

]− 1
2 ,

where
d−→ denotes converges in distribution and N(0, 1) is a random variable

that has a standard normal distribution Φ(x).

√
n
(
p̂n(x)− p(x)

)
σ−1
n (x)

d−→ N(0, 1), x ∈ (0, 1),

where

σ2
n(x) = p̂n(x)(1− p̂n(x))

[
4πx(1− x)

]− 1
2 .
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This makes it possible to construct the confidence interval for p(x):

p±n (x) = p̂n(x)± σn(x)√
n

λα, λα = Φ−1
(1 + α

2

)
, 0 < α < 1.

Theorem 2.

(a) Let p(x) have the bounded first derivative. Then

√
nTn

d−→ N(0, σ2(p)),

where Tn =
1∫
0

[p̂n(x)− Ep̂n(x)] dx, σ2(p) =
1∫
0

p(x)(1− p(x)) dx.

(b) Let p(x) ∈W [0, 1]. Then

√
nTn

d−→ N(0, σ2(p)), (3)

where Tn =
1∫
0

[p̂n(x)− p(x)] dx, σ2(p) =
1∫
0

p(x)(1− p(x)) dx.

Testing the specified of the Bernoulli regression function

We give several comments on the application of Tn as a test statistic for the testing
hypothesis H0: p(x) = p0(x) (p0(x), x ∈ [0, 1], is the well-known dose-response
curve). This statistic is informative because the sign of Tn may carry information
on the character of an alternative when the hypothesis H0 is not true, i.e. the sign
of the test statistic indicates the direction of deviation of the alternative from H0.
It can be shown that

E

1∫
0

(
p̂n(x)− p0(x)

)
dx ∼

1∫
0

(p(x)− p0(x)) dx.

Thus, for an alternative of the form H+
1 : p(x) > p0(x) the statistic Tn will have the

tendency to deviate to the right from zero, while for the alternative H−1 : p(x) <
p0(x) it deviates to the left. Hence it is natural to use the statistic Tn in problems
of testing the hypothesis H0 against the one-sided alternatives H+

1 and H−1 .
The assertion (b) of Theorem 2 enables us to construct the test of the asymptotic

level α, 0 < α < 1, for testing the hypothesis H0, according to which p(x) = p0(x),
x ∈ [0, 1]:

Test I. Reject the hypothesis H0 against the right-side alternative H+
1 : p(x) >

p0(x), x ∈ [0, 1] when Tn ≥ λασ(p0)√
n

for λα = Φ−1(1− α).

Test II. Reject the hypothesis H0 against the left-side alternative H−1 : p(x) < p0(x)

when Tn ≤ λα√
n
σ(p0) for λα = Φ−1(α).
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Tests I and II are consistent against the one-sided alternatives H+
1 and H−1 ,

respectively. As an example we show that this is so for Test I. Let p(x) and p0(x) ∈
W [0, 1].

It is obvious that

γn(p) = PH+
1

(
Tn ≥ λα

σ(p0)√
n

)
= PH+

1

(√
n

1∫
0

(
p̂n(x)− p(x)

)
dxσ−1(p)

≥ −
√
n

1∫
0

(p(x)− p0(x)) dx · σ−1(p) + λασ(p0)σ−1(p)

)
.

Since

√
n

1∫
0

(
p̂n(x)− p(x)

)
dxσ−1(p)

d−→ N(0, 1)

for the hypothesis H+
1 , we have γn(p) −→ 1 as n→∞.

However if n changes, the alternative changes too, getting closer to the basic
hypothesis H0, which means that the power of the test does not necessarily converge
to 1. As an example, let us consider a sequence of Pitmen-type alternatives that
are close to the hypothesis H0:

H+
n : p

(n)
1 (x) = p0(x) + n−

1
2u(x), (4)

where u(x) > 0 and u(x) ∈W [0, 1]. Then

PH+
n

(
Tn ≥

λα√
n
σ(p0)

)
−→ 1− Φ

(
λα −

c

σ(p0)

)
, c =

1∫
0

u(x) dx > 0.

Indeed,

PH+
n

(
Tn ≥

λα√
n
σ(p0)

)
= PH+

n

(√
n

1∫
0

(
p̂n(x)− p(n)

1 (x)
)
dxσ−1(p

(n)
1 ) ≥ σ(p0)

σ(p
(n)
1 )

λα −
c

σ(p
(n)
1 )

)
−→ 1− Φ

(
λα −

c

σ(p0)

)
.

Hence it follows that for alternative (4) Test I for testing the hypothesis H0 is
asymptotically strictly unbiased since c > 0, and is equal to 0 if and only if u(x) = 0
(For Test II, the argumentation is analogous).
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1 Introduction

An important problem in risk analysis is the ordering of two risks. Stochastic
dominance has become a topic of great interest which is widely studied due to its
various applications in different domains: economics, finances, banking, statistics,
risk theory, medicine and others. For introduction in the field, we refer to the
following books that address different types of stochastic dominance and the links
between them: Levy (2015) and Shaked and Shanthikumar (2007).

Order statistics are of great interest in operations research, reliability theory,
data analysis, statistical inference and other areas of applied probability. They have
received a lot of attention from many researchers. Let us consider X1, X2, ..., Xn

with X1:n ≤ X2:n ≤ ... ≤ Xn:n where Xk:n represents the k−th order statistic which
is related to the lifetimes of (n− k+ 1)-out-of-n system. In particular, Xn:n (when
k = n) and X1:n (when k = 1) denote the lifetimes of parallel and series systems,
respectively. Balakrishnan and Rao (1998) offered an important course in this
field. Some recent applications have included: empirical studies of price dispersion
on the Internet (Warin and Leiter (2012)); utility maximization frameworks for
fair and efficient multicasting in multicarrier wireless cellular networks (Liu et al.
(2013)); degradation pattern prediction of a polymer electrolyte membrane fuel cell
stack (Bae et al. (2014)). Results about stochastic order of smallest or highest
order statistics were given by Balakrishnan and Torrado (2016), Balakrishnan et al.
(2020), Chen et al. (2019), Khaledi and Kochar (2006).

∗Corresponding author: luigi catana@yahoo.com
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The work in this case uses transmuted distribution, a recent class of distribution.
A transmuted distribution obtained from another distribution. A simple extension
of the probability distributions is proposed by Shaw and Buckley (2007).

We present the structure of this paper. In the section 2 there are presented
the preliminaries. In the section 3 we present sufficient conditions of transmuta-
tion parameters for some stochastic orders from Catana and Preda (2021). In the
section 4 we prove that we can have hazard rate and reversed hazard rate orders
of extremes order statistics in the case of quadratic transmuted distributions for a
family parameters, although the parameters are not comparable in some sense. In
the last section we discuss the conclusions.

2 Preliminaries

Let (Ω,F , P ) be a probability space and λ the Lebesgue measure on (R,B(R)). Let
X : Ω→ R be an absolutely continuous nonnegative random variable. We consider
FX(x) = P (X ≤ x) its distribution function, survial function FX(x) = P (X >

x) = 1 − FX(x), fX density function, rX (x) = fX(x)

FX(x)
, x ∈ Supp(FX) hazard rate

function and r̃X (x) = fX(x)
FX(x) , x ∈ Supp(FX) reversed hazard rate function, where,

for a function g : R→ R we denote Supp(g) = {x ∈ R : g(x) 6= 0}.
In this paper all the random variables are absolutely continuous with respect to

the Lebesgue measure.
For x(1) ≤ x(2) ≤ ... ≤ x(n) real numbers, we denote by x(i) the i-th ordered

number.
Let X1, X2, ..., Xn be independent random variables.
We denote X1:n = min (X1, X2, ..., Xn) and Xn:n = max (X1, X2, ..., Xn) .
Then it is known that

FX1:n
(x) =

n∏
i=1

FXi(x) and FXn:n
(x) =

n∏
i=1

FXi(x)

fX1:n
(x) =

n∏
i=1

FXi(x) ·
(

n∑
i=1

rXi(x)

)
, fXn:n

(x) =
n∏
i=1

FXi(x) ·
(

n∑
i=1

r̃Xi(x)

)
,

rX1:n(x) =
n∑
i=1

rXi(x) and r̃Xn:n(x) =
n∑
i=1

r̃Xi(x).

Let H be a real distribution function, H = 1−H and h = H ′. For λ ∈ [−1, 1] we
denote the quadratic transmuted distribution T −H(λ) with distribution function
F = (1 + λ)H − λH2.

Definition 1. (Shaked and Shanthikumar, 2007) Let x, y ∈ Rd.
(i) We say that x is smaller than y in the sense 1 (and denote x ≤(1) y) if

xi ≤ yi ∀ i ∈ {1, 2, ..., d}.

Definition 2. (Shaked and Shanthikumar, 2007) Let X, Y : Ω→ R random vari-
ables. We say that X is smaller than Y in the

(i) hazard rate order (written as X ≺hr Y ) if rX(x) ≥ rY (x) ∀ x ∈ Supp(FX)∩
Supp(FY );
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(ii) reversed hazard rate order (written as X ≺rh Y ) if r̃X (x) ≤ r̃Y (x) ∀
x ∈ Supp(FX) ∩ Supp(FY );

3 Stochastic order when the transmutation pa-
rameters are comparable in sense 1

The following four theorems give sufficient conditions for hazard rate and reverse
hazard rate orders between extremes order statistics using transmuted distributions:

Theorem 1. (Catana and Preda, 2021, Theorem 3.2) Let X1, X2, ..., Xn indepen-
dent random variables, Xi ∼ T − H(αi) and Y1, Y2, ..., Yn, independent random
variables, Yi ∼ T −H(βi). Then (α1, ..., αn) ≥(1) (β1, ..., βn)⇒ X1:n ≺hr Y1:n.

Theorem 2. (Catana and Preda, 2021, Theorem 3.4) Let X1, X2, ..., Xn be inde-
pendent random variables, Xi ∼ T −H(αi) and Y1, Y2, ..., Yn, independent random
variables, Yi ∼ T −H(βi). Then (α1, ..., αn) ≥(1) (β1, ..., βn)⇒ Xn:n ≺rh Yn:n.

More results with more general transmuted distributions classes are given in
Catana and Preda (2021).

4 Main results

rX1:2(x) = rX1(x) + rX2(x) = (1+α1)h(x)−2α1h(x)H(x)

(1+α1)H(x)−α1(H(x))
2 + (1+α2)h(x)−2α2h(x)H(x)

(1+α2)H(x)−α2(H(x))
2 =

h(x)

H(x)

(
2− α1H(x)

1+α1−α1H(x)
− α2H(x)

1+α2−α2H(x)

)
Thus X1:2 ≺hr Y1:2 ⇔ α1

1+α1−α1H(x)
+ α2

1+α2−α2H(x)
≤ β1

1+β1−β1H(x)
+ β2

1+β2−β2H(x)

∀x ∈ Supp(FX1:2
) ∩ Supp(FY1:2

)

r̃X2:2(x) = r̃X1(x) + r̃X2(x) = (1−α1)h(x)+2α1h(x)H(x)

(1−α1)H(x)+α1(H(x))2
+ (1−α2)h(x)+2α2h(x)H(x)

(1−α2)H(x)+α2(H(x))2
=

h(x)
H(x)

(
2 + α1H(x)

1−α1+α1H(x) + α2H(x)
1−α2+α2H(x)

)
X2:2 ≺rh Y2:2 ⇔ α1

1−α1+α1H(x) + α2

1−α2+α2H(x) ≤
β1

1−β1+β1H(x) + β2

1−β2+β2H(x)

∀x ∈ Supp(FX2:2
) ∩ Supp(FY2:2

).

Proposition 1 and 2 below show that there exists a family transmutation param-
eters that are not comparable in sense 1 we can have stochastic order in the sense
of hazard rate and reversed hazard rate.

Proposition 1. Let n = 2, r ∈ [0,∞), α1 = −r, α2 = r, β1 ∈ [r,∞), β2 ∈ [−r, r].
Then there is no order in sense 1 between (α1, α2) and (β1, β2) but Y1:2 ≺hr X1:2.

Proof. According to the definition of order in sense 1 between two points we
have that there is no order in sense 1 between (α1, α2) and (β1, β2) . Let X1 ∼
T − H(−r), X2 ∼ T − H(r) independent random variables, Y1 ∼ T − H(r), Y2 ∼
T − H(−r) independent random variables. Then rX1:2

(x) = rY1:2
(x), ∀ x ∈

Supp(FX1:2)∩Supp(FY1:2), thus X1:n =hr Y1:n. Let X ′1 ∼ T−H(r), X ′2 ∼ T−H(−r)
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independent random variables, Y ′1 ∼ T −H(β1), Y ′2 ∼ T −H(β2) independent ran-
dom variables. From theorem 1 it results Y ′1:n ≺hr X ′1:n. Thus X1:n =hr Y1:n =hr

Y ′1:n ≺hr X ′1:n.

Proposition 2. Let n = 2, r ∈ [0,∞), α1 = −r, α2 = r, β1 ∈ [r,∞), β2 ∈ [−r, r].
Then there is no order in sense 1 between (α1, α2) and (β1, β2) but Y2:2 ≺rh X2:2.

Proof. According to the definition of order in sense 1 between two points we
have that there is no order in sense 1 between (α1, α2) and (β1, β2) . Let X1 ∼
T − H(−r), X2 ∼ T − H(r) independent random variables, Y1 ∼ T − H(r), Y2 ∼
T − H(−r) independent random variables. Then r̃X2:2

(x) = r̃Y2:2
(x), ∀ x ∈

Supp(FX2:2
)∩Supp(FY2:2

), thus X2:2 =rh Y2:2. Let X ′1 ∼ T−H(r), X ′2 ∼ T−H(−r)
independent random variables, Y ′1 ∼ T −H(β1), Y ′2 ∼ T −H(β2) independent ran-
dom variables. From theorem 1 it results Y ′2:2 ≺rh X ′2:2. Thus X2:2 =rh Y2:2 =rh

Y ′2:2 ≺rh X ′2:2.

5 Conclusion

In this paper we have shown that for Theorems 1 and 2 presented in Section 3, the
reciprocal is not generally valid. In a future research we will extend the results in
a more general context.

Acknowledgements: Thanks to professors Vasile Preda and Gheorghita Zbaganu
for my introduction in this field and advice.

Bibliography

[1] Bae, S. J., Kim, S. J., Lee, J. H., Song, I., Kim, N. I., Seo, Y., et al. (2014).
Degradation pattern prediction of apolymer electrolyte membrane fuel cell stack
with series reliability structure via durability data of single cells. Applied Energy,
131, 48–55.

[2] Balakrishnan, N., Rao C.R. (1998). Order Statistics: Applications. Handbook
of Statistics 17, North-Holland, Amsterdam.

[3] Balakrishnan, N., Torrado N. (2016). Comparisons between largest order statis-
tics from multiple-outlier models. Communications in Statistics-Theory and
Methods, 50, 176-189.

[4] Balakrishnan, N., Barmalzan, G., Haidari, A. (2020). Exponentiated models
preserve stochastic orderings of parallel and series systems. Communications in
Statistics-Theory and Methods, 49, 1592-1602.

[5] Catana, L. I., Preda, V. (2021). Comparing the extremes order statis-
tics between two random variables sequences using transmuted distri-
butions. Communications in Statistics-Theory and Methods, 1-18, DOI:
10.1080/03610926.2021.1898641.

[6] Chen, J., Zhang, Y., Zhao, P. (2019). Comparisons of order statistics from
heterogeneous negative binomial variables with applications. Communications
in Statistics-Theory and Methods, 53, 990-1011.



On the stochastic orders of extremes order statistics 17

[7] Khaledi, B.E., Kochar, S. C. (2006). Weibull distribution: Some stochastic com-
parisons results. Journal of Statistical Planning and Inference, 136, 3121-3129.

[8] Levy, H. (2015). Stochastic Dominance: Investment Decision Making under Un-
certainty, 3rd ed.; Springer: Berlin/Heidelberg, Germany.

[9] Liu, J., Chen, W., Zhang, Y. J., Cao, Z. (2013). A utility maximization frame-
work for fair and efficient multicasting in multicarrier wireless cellular networks.
IEEE/ACM Transactions on Networking, 21, 110-120.

[10] Shaked, M., Shanthikumar, J. G. (2007). Stochastic orders. New York:
Springer.

[11] Shaw, W.T., Buckley, I.R.C. (2009). The alchemy of probability distribu-
tions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distri-
bution from a rank transmutation map.

[12] Warin, T., Leiter, D. (2012). Homogenous goods markets: An empirical study
of price dispersion on the internet. International Journal of Economics and
Business Research, 4, 514-529.



Clustering multivariate functional data using
unsupervised binary trees

Steven Golovkine,1∗ Nicolas Klutchnikoff2 and Valentin Patilea3

1Groupe Renault & CREST - UMR 9194, Rennes, France
2Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

3Ensai, CREST - UMR 9194, Rennes, France

Abstract: We propose a model-based clustering algorithm for a general class
of functional data. The random functional data realizations could be measured
with error at discrete, and possibly random, points in the definition domain.
The idea is to build a set of binary trees by recursive splitting of the obser-
vations. The number of groups are determined in a data-driven way. The al-
gorithm provides easily interpretable results and fast predictions for online data
sets. Results on simulated datasets reveal good performance in various complex
settings. The open-source implementation of the algorithm can be accessed at
https://github.com/StevenGolovkine/FDApy. Complete version of the work is
available at arxiv:2012.05973.
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1 Introduction

Sensors are more and more present in our daily life. These provide a large amount
of data that can be modeled as functional data. The amount of such collected data
grows rapidly as does the cost of their labeling. Thus, there is an increasing interest
in methods that aim to identify homogeneous groups within functional datasets.

Assume a sample of N curves as being values on the realizations of a stochastic
process, possibly recorded with some error, at discrete random times. We aim to
define a procedure, based on a sample of N noisy curves, to build groups of similar
curves.

∗Corresponding author: steven golovkine@icloud.com
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2 Model

The structure of our data, referred to as multivariate functional data, is very similar
to that presented in [3]. The data consist of independent trajectories of a stochastic
process X = (X(1), . . . , X(P ))>, P ≥ 1. For each 1 ≤ p ≤ P , let Tp = [0, 1]dp , dp ≥
1. Each coordinate X(p) :p→ R is assumed to belong to 2p endowed with the usual
inner product that we denote by ·, ·. Thus X is a stochastic process indexed by
= (t1, . . . , tP ) belonging to :=1 × · · ·×P and taking values in := 21 × · · · × 2P .
Consider the function ·, · : × → R,

f, g :=

P∑
p=1

f (p), g(p), f, g ∈ .

is a Hilbert space with respect to the inner product ·, · [3].
Let K ≥ 1 be an integer, and let Z be a random variable taking values in

{1, . . . ,K} such that P(Z = k) = pk with pk > 0 and
∑K
k=1 pk = 1. The variable Z

represents the cluster membership of the realizations of the process. We consider
that the stochastic processX follows a functional mixture model with K components:

X() =

K∑
k=1

µk()1{Z=k} +
∑
j≥1

ξjφj(), ∈, (1)

where µ1, . . . , µK ∈ are the mean curves per cluster, {φj}j≥1 is an orthonormal
basis of and ξj , j ≥ 1 are real-valued random variables which are conditionally
independent given Z. For each 1 ≤ k ≤ K, ξj | Z = k ∼ N (0, σ2

kj) for all j ≥ 1.

Lemma 1. Let X be defined as in (1) for some orthonormal basis {φj}j≥1. Let
{ψj}j≥1 be another orthonormal basis in and consider

cj = X − µ, ψj , j ≥ 1 where µ(·) =

K∑
k=1

pkµk(·).

Then cj | Z = k ∼ mkjτ
2
kj, where

mkj = µk − µ, ψj and τ2
kj =

∑
l≥1

φl, ψj
2σ2
kl.

Remark 3. Lemma 1 shows that, no matter what the user’s choice may be for
orthonormal basis {ψj}j≥1, the clusters will be preserved after expressing the real-
izations of the process into this basis. However, some bases might be more suitable
than others. In particular, the basis based on a multivariate functional principal
component analysis (MFPCA) developed in [3] is very interesting in this context.

In real data applications, the realizations of X are usually measured with error
at discrete, and possibly random, points in the definition domain. For each 1 ≤
n ≤ N , and given a vector of positive integers Mn = (M

(1)
n , . . . ,M

(P )
n ), let Tn,m =
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(T
(1)
n,m1 , . . . , T

(P )
n,mP ), 1 ≤ mp ≤ M

(p)
n , 1 ≤ p ≤ P , be the random observation times

for the curve Xn. These times are obtained as independent copies of a variable T
taking values in T . The vectorsM1, . . . ,MN represent an independent sample of an
integer-valued random vector M with expectation µM which increases with N . We
assume that the variables X, M and T are mutually independent. The observations
associated with a curve, or trajectory, Xn consist of the pairs (Yn,m, Tn,m) ∈ RP×T ,

where m = (m1, . . . ,mP ), 1 ≤ mp ≤M (p)
n , 1 ≤ p ≤ P , and Yn,m is defined as

Yn,m = Xn(Tn,m) + εn,m, 1 ≤ n ≤ N, (2)

with the εn,m being independent copies of a centered error random vector ε ∈ RP

with finite variance. The mean and covariance functions of X(p), 1 ≤ p ≤ P of X
can be estimated using, e.g., [7]. Concerning the estimation of the eigenfunctions
and the eigenvalues for the MFPCA, as well as for the projection of the observations
on the eigenfunctions basis, we use [3].

3 The fCUBT algorithm

Let S be a sample of realizations of the process X, defined in (1). We consider the
problem of learning a partition U such that every element U of U gathers similar
elements of S. Our clustering procedure follows the idea of the Clustering using
Unsupervised Binary Trees (CUBT) algorithm, considered by [2], which we adapt
to functional data. In the following, we describe in detail the Functional Clustering
Using Unsupervised Binary Trees (fCUBT) algorithm.

Building the maximal tree

In the following, a tree T is a full binary tree which represents a nested partition
of the sample SN , and D ≥ 1 its depth. Let S0,0 be the root node to which we
assign the whole space sample SN . Every node Sd,j ⊂ SN0

is indexed by the pair
(d, j) where 0 ≤ d < D is the depth index of the node and 0 ≤ j < 2d is the node
index. A non-terminal node (d, j) has two children Sd+1,2j and Sd+1,2j+1 such that
Sd,j = Sd+1,2j ∪Sd+1,2j+1.

A tree T is thus defined using a top-down procedure by recursively splitting.
At each stage, a node (d, j) is possibly split into two subnodes provided it ful-
fills some condition. A MFPCA with ncomp components, ncomp ≤ J , is then con-
ducted on the elements of Sd,j. This results in a set of eigenvalues associated
with a set of eigenfunctions. The matrix of scores Cd,j is then defined with the
columns built with the projections of the elements of Sd,j onto the set of eigen-
functions. For each K = 1, . . . ,Kmax, we fit a Gaussian mixture model to the
columns of the matrix Cd,j using an EM algorithm. The resulting models are de-
noted as {M1, . . . ,MKmax}. The number of groups within a node is determine

using the BIC, K̂d,j = arg maxK=1,...,Kmax BIC(MK). If K̂d,j > 1, we split Sd,j

using the model M2. Otherwise, the node is considered to be a terminal node and
the construction of the tree is stopped for this node.
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The recursive procedure continues downward until one of the following stopping
rules are satisfied: there are less than minsize observations in the node or the
estimation K̂d,j of the number of clusters in the mode Sd,j is equal to 1. When the
algorithm ends, a label is assigned to each leaf.

Joining step

In a perfect case, this tree will have the same number of leaves as the number of
mixture components of X. In practice, it is rarely the case, and the number of
leaves may be much larger than the number of clusters. That is why a joining
step, which joins terminal nodes which do not necessarily share the same direct
ascendant, should also be considered.

Let G = (V,E) be a graph where V = {Sd,j, 0 ≤ j < 2d, 0 ≤ d <
D |Sd,j is a terminal node} is a set of vertices and

E =
{

(Sd,j,Sd′,j′) |Sd,j,Sd′,j′ ∈ V, Sd,j 6= Sd′,j′ and K̂(d,j)∪(d′,j′) = 1
}

is a set of edges. K̂(d,j)∪(d′,j′) is the estimation of the number of clusters in Sd,j ∪
Sd′,j′ using the same methodology than the one in the previous step.

For each element (Sd,j,Sd′,j′) of E, we associate the value of the BIC that

corresponds to K̂(d,j)∪(d′,j′). The edge of G that corresponds to the maximum of
the BIC is then removed and the associated vertices are joined. Thus, there is one
cluster less. This procedure is run recursively until no pair of nodes can be joined
or only one node in the tree remains.

Once the partition U has been created, we can classify new observations. This
classification is performed by descending the tree T and by computing the proba-
bilities to belong to each of the classes at each node.

4 Empirical analysis

We show the performance of our algortihm on an example. Let K = 5, P = 2,
1 =2= [0, 1]. An independent sample of N = 1000 bivariate curves is simulated
according to the following model : for t1, t2 ∈ [0, 1],

Cluster 1: X(1)(t1) = h1(t1) + b0.9(t1), X(2)(t2) = h3(t2) + 1.5× b0.8(t2),

Cluster 2: X(1)(t1) = h2(t1) + b0.9(t1), X(2)(t2) = h3(t2) + 0.8× b0.8(t2),

Cluster 3: X(1)(t1) = h1(t1) + b0.9(t1), X(2)(t2) = h3(t2) + 0.2× b0.8(t2),

Cluster 4: X(1)(t1) = h2(t1) + 0.1× b0.9(t1), X(2)(t2) = h2(t2) + 0.2× b0.8(t2),

Cluster 5: X(1)(t1) = h3(t1) + b0.9(t1), X(2)(t2) = h1(t2) + 0.2× b0.8(t2),

where h1(t) = (6 − |20t − 6|)+/4, h2(t) = (6 − |20t − 14|)+/4 and h3(t) = (6 −
|20t − 10|)+/4, for t ∈ [0, 1]. The functions bH are defined, for t ∈ [0, 1], by
bH(t) = (1+t)−HBH(1+t) where BH(·) is a fractional Brownian motion with Hurst
parameter H. The mixing proportions are set to be equal. The data to which we
apply the clustering is obtained as in (2). Each component curve is observed at 101
equidistant points in [0, 1]. The bivariate error vectors have zero-mean Gaussian
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independent components with variance 1/2. For each n ∈ {1, . . . , N}, we observe a
realization of the vector X = (X(1) + αX(2), X(2))>, where α = 0.4.

Our procedure is compared to FunHDDC [6], Funclust [5] and k-means [4] on
the curves (k-means-d1) and their derivatives (k-means-d2). We also compare
our algorithm with a GMM on the coefficients of a MFPCA (FPCA+GMM) and also
our algorithm without the joining step (Growing). Our algorithm exhibits good
performance in terms of Rand index (cf. Figure 1) and estimation of the number
of clusters (cf. Table 1).

Method 3- 4 5 6 7+
fCUBT - - 0.664 0.238 0.098
Growing - - 0.604 0.182 0.214
FPCA+GMM - - 0.414 0.396 0.19
FunHDDC 1 - - - -
Funclust 0.248 0.192 0.200 0.196 0.164
k-means-d1 - - 0.034 0.144 0.822
k-means-d2 0.014 0.094 0.874 0.010 0.008

Table 1: Number of clusters

fCUBT Growing FPCA+GMM FunHDDC Funclust k-means-d1 k-means-d2

0.0

0.2

0.4

0.6

0.8

1.0

A
R

I

Figure 1: Rand index

The fCUBT algorithm was introduced above for multivariate functional data
which could be defined on different domains, possibly of different dimensions, e.g.
T = [0, 1]2. In such situations, the eigendecomposition of image data can be per-
formed using the FCP-TPA algorithm for regularized tensor decomposition [1] and
be used in the MFPCA.
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Abstract: We propose a new test statistic for detecting a changed segment in
the mean of a sample at unknown dates. Test statistic is based on the adaptive
self-normalized partial sums process. Our aim is to detect a short length changed
segment. The new test statistic is compared with maximal ratio statistic by gener-
ating samples from symmetrized Pareto and Log-Gamma distributions.
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1 Introduction

For each n ≥ 1 we consider the model

Ynk = µnk +Xk, k = 1, 2, . . . , n, (1)

where (µnk) ⊂ R and (Xk, k ≥ 1) is a sequence of independent identically distributed
(i.i.d.) zero mean random variables with its generic element denoted by X. We want
to test the null hypothesis

H0 : µn1 = · · · = µnn = 0 (2)

against the alternative

HA : µnk = µn(k)1I∗(k), k = 1, . . . , n, (3)

where I∗ := {k∗ + 1, . . . , k∗ + `∗} for some k∗ = k∗n ≥ 0, `∗ = `∗n ∈ (0, n) and
1I∗(k) = 1 if k ∈ I∗ and 0 otherwise. The interval I∗ represents a changed segment
in the sample. We are interested in detection short length changed segment thus
assuming `∗/n to be small as n is large.

The test statistics are constructed from moving sums

Sk,m = Xn,k+1 + · · ·+Xn,m, 0 ≤ k < m ≤ n,
∗Corresponding author: jovita.gudan@mif.vu.lt
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and moving sums of squares

V 2
k,m = X2

n,k+1 + · · ·+X2
n,m, 0 ≤ k < m ≤ n.

We consider the class of functions {ργ,β , 0 ≤ γ < 1, β > 0}, where

ργ,β(h) = hγ logβ(1 + 1/h), h ∈ (0, 1)

and following [2] we define

T adγ,β,n := V −1
0,n max

0≤k<m≤n

|Sk,m|
ργ,β(V 2

k,m/V
2
0,n)

. (4)

The upper script ad means adaptive (see [2] for such reason). Asymptotic behaviour
of T adγ,β,n is contained in the following results.

Theorem 1. Let either 0 ≤ γ < 1/2 and β ≥ 0 or γ = 1/2 and β > 1/2. Assume
for the model (1) that either X is symmetric and EX2 < ∞ or E|X|q < ∞ for
some q > 2. Then under the null hypothesis (2), for any x > 0,

lim
n→∞

P (T adγ,β,n > x) = P (Tγ,β > x), (5)

where

Tγ,β = sup
0≤s<t≤1

|W (t)−W (s)|
ργ,β(|t− s|)

(6)

and (W (t), t ∈ [0, 1]) is a standard Wiener process.

Proof. Denote τnk = V 2
0,k/V

2
0,n, k = 0, 1, . . . , n. Consider the adaptive polygonal

line process ζadn (t), 0 ≤ t ≤ 1, which is obtained by linear interpolation of the points
(0, 0), (S0,k, τnk), k = 1, . . . , n. Under H0 we have Xni = Xi, i = 1, . . . , n. In this
case it follows from [2], that

V −1
0,n ζ

ad
n

D−−−−→
n→∞

W

in the Hölder space Ho
γ,β [0, 1] (see, [2] for definitions). By the continuous mapping

theorem it follows then

V −1
0,n ||ζadγ,β,n||γ

D−−−−→
n→∞

||W ||γ,β . (7)

It is known (see, [2]), that the Hölder norm of polygonal line function is attained
at some vertexes. Hence the result follows from (7).

Suppose that T̂ := T̂ adγ,β,n is the observed value of a test statistic T := T adγ,β,n.

Then the P -value of T̂ is

p(T̂ ) = 1− P (T ≤ T̂ ) = P (T > T̂ ).
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If we knew the distribution of the statistics T , we would simply calculate p(T̂ ) and

reject the null whenever p(T̂ ) < α. Since we do not know the probability P (T > x)
it is common to use either an asymptotic approximation P (T > x) ≈ P (T adγ,β > x),

where the probability P (Tγ,β > x) can be calculated by Monte-Carlo. So that

p(T̂ ) ≈ 1

N

N∑
j=1

1{T (j)
γ,β > T̂ ),

where (T
(j)
γ,β , j = 1, . . . , N) are simulated by using independent standard Wiener

processes W1, . . .WN . The distribution of TNγ,β was evaluated on a grid of size 1000
and by running a Monte-Carlo simulations with 400 runs. The results are presented
in Table 1 given in the Appendix.

Assuming n = 4m we divide the sample Xn1, . . . , Xnn into four equal parts and
following [1] define for γ ≥ 0 the maximal ratio statistics as follows

MRγ,n := max

{
Tn1

Tn3
,
Tn3

Tn1
,
Tn2

Tn4
,
Tn4

Tn2

}
, (8)

where
Tnj = T

(γ)
nj := max

1≤`≤m
`−γ max

(j−1)m≤k≤jm−`
|Sk,`| , j = 1, . . . , 4.

The asymptotic behavior in distribution of MRγ,n depends on the threshold
γ = 1/2− 1/a. As proved in [1]:

• when 1/2− 1/a < γ < 1/2, then

lim
n→∞

P (MRγ,n > x) =

{
1 if x < 1,

4xa(1 + xa)−2 if x ≥ 1;
(9)

• when 0 < γ < 1/2− 1/a, then

lim
n→∞

P (MRγ,n > x) =

1 if x < 1

1−
[
1− 2

∫∞
0
Fγ(xy) dFγ(y)

]2
if x ≥ 1,

(10)

where Fγ(x) = P (Tγ,0 > x).

2 Comparison of statistics by simulation study

To compare the finite sample behavior of tests T adγ,β,n assuming β = 0 and γ < 1/2

and MRγ,n assuming γ < 1/2 for independent random variables, we conduct an
experiment using Monte-Carlo simulations. We use the symmetrized Pareto and
Log-Gamma distributions to generate X regularly varying with index a. Data are
generated by the model Xnk = µ∗n1{k∗+1,··· ,k∗+`∗}(k) +Xk.
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The performance of T adγ,β,n depends on a parameter γ, which is examined under

variant values. Figure 1 portrays the empirical power of test (4) under various
γ = 0.02, 0.04, . . . , 0.45 values with tail index a = 5, nominal size α = 0.05, sample
size n = 1000, changed mean segment µ∗n = 0.2 and 1000 Monte-Carlo simulations.
Consequently, without loss of generality, the remaining Monte-Carlo simulations for
the Adopted test (4) are conducted with parameter β equal to 0.
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Figure 1: Empirical power of T adγ,β,n test under the similar settings n = 1000, α =
0.05 from Pareto distribution
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Figure 2: Empirical power of the tests under the similar settings with n = 300, α =
0.05 from Pareto distribution

Now, we investigate the relationship between T adγ,β,n and MRγ,n tests under var-
ious settings. First, to analyze the effect of the tail index a on empirical power
scores, we reflect on only two values of parameter of regular variation a = 2.5, 5 as
even bigger values of a cause higher empirical power of tests (4) and (8). Figure 2
depicts the empirical power for different values of a for the samples generated from
Pareto distribution with n = 300, `∗ = 30, 60, µ∗n = 0.2, 0.8, 1, 1.8, 2 and α = 0.05.
For both tests T adγ,β,n and MRγ,n, it can be seen that the greater the index a, the
amplitude of the change µ∗n or the length of the changed segment `∗, the bigger the
empirical power of the test. These two tests (4) and (8) are linked by threshold
γ = 1/2− 1/a as introduced in (9) and (10). Therefore, in order to investigate the
effect at the different two settings, we introduce the results of the empirical power
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of the tests (4) and (8) under the events of 0 < γ < 1/2 − 1/a with γ = 0.09 and
1/2− 1/a < γ < 1/2 with γ = 0.11 for both a = 2.5, n = 300, α = 0.05, `∗ = 30, 60
and µ∗n = 0.2, 0.8, 1, 1.8, 2 as illustrated in Figure 3. In this case, the threshold
1/2− 1/a = 0.1 divides MRγ,n limiting distribution to (9) and (10) and for T adγ,β,n
limiting distribution (5) is the same for both cases. Remarkably, the performance
of the test T adγ,β,n is better than MRγ,n when 1/2 − 1/a < γ < 1/2 and vice versa

when 0 < γ < 1/2− 1/a.
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Figure 3: Empirical power of the tests under the similar settings with a = 2.5, n =
300, α = 0.05 from Log-gamma distribution

Table 2 given in the Appendix summarizes the performance of tests MRγ,n and
T adγ,β,n under the Log-Gamma and Pareto distributions with regular variation index
a = 5, sample size of n = 200, 600, 1000, amplitude of the change µ∗n = 0.3, length
`∗ of approximately of 1

7 ,
1
4 the sample size n. From the results, it can be seen

that increasing sample size, length and amplitude of the change also increase the
empirical power.

In conclusion, this paper introduces a new T adγ,β,n test that is compared with

MRγ,n test. Simulation study shows the power of the test T adγ,β,n is better than

MRγ,n when 1/2− 1/a < γ < 1/2 and vice versa when 0 < γ < 1/2− 1/a.
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Appendix

α/γ 0.01 0.09 0.11 0.2 0.29 0.31 0.49
0.025 2.6195 2.5592 2.4319 2.6152 2.7078 2.8187 3.7913
0.05 2.2485 2.1404 2.1894 2.4627 2.5157 2.6608 3.6081
0.1 1.9382 1.9404 1.9406 2.1870 2.3034 2.4437 3.3937

Table 1: Asymptotic critical values of T adγ,β,n for β = 0

n = 200 n = 600 n = 1000

`∗ = 35 `∗ = 45 `∗ = 80 `∗ = 140 `∗ = 165 `∗ = 235

Log-Gamma

MRγ,n

γ = 0.01 0.4216 0.4420 0.4850 0.6581 0.6873 0.8006
γ = 0.29 0.7026 0.7130 0.7403 0.8567 0.8549 0.9415
γ = 0.31 0.4712 0.5310 0.5405 0.7194 0.7108 0.8165

T adγ,β,n

γ = 0.01 0.1387 0.1075 0.2237 0.4815 0.44534 0.7131
γ = 0.29 0.1814 0.1329 0.3181 0.6254 0.6297 0.8731
γ = 0.31 0.1273 0.1084 0.2803 0.5812 0.5939 0.8227

Pareto

MRγ,n

γ = 0.01 0.8522 0.9290 0.9472 0.9970 0.9951 1
γ = 0.29 0.9514 0.9780 0.9833 1 1 1
γ = 0.31 0.8899 0.9250 0.9419 0.9990 0.9951 1

T adγ,β,n

γ = 0.01 0.5888 0.8094 0.9039 0.9984 0.9991 1
γ = 0.29 0.8006 0.9349 0.9946 1 1 1
γ = 0.31 0.7664 0.9198 0.9865 1 1 1

Table 2: Empirical power of T adγ,β,n and MRγ,n statistical tests under constant
change in mean, µ∗n = 0.3, a = 5, α = 0.05 and β = 0
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Abstract: The aim of this work is to predict the future spread of COVID-19 in
Bulgaria based on the real epidemiological data for a year ago. The data are taken
from the unified information portal for Bulgaria where they are published daily. To
study the spread of the epidemic in the country and to find some dependencies,
we divide the country into two regions: (i) the Sofia-city and (ii) the province.
To predict the spread of the disease in Bulgaria for a few months ahead we use a
statistical forecasting package Prophet in R software. Our results show that the
spread of the disease in the province depends on its spread in the capital.
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1 Introduction

At the end of 2019 in the city Wuhan, China, COVID-19 was identified, which
manifested itself as the new pandemic of the 21st century, affecting the world for
over a year. To study the behavior of the COVID-19 pandemic, the scientists usually
use two approaches: (i) creating mathematical epidemiological models describing
the stages and disease development in the population and (ii) analyzing statistics
data to predict the development of the disease. In the first approach, researchers
apply epidemiological models such as SI, SIR, SEIR, SEIRS, describing the spread
of viral diseases [1],[2]. We note that these epidemiological models can be applied
not only for description of pandemics among humans, but also in the spread of viral
diseases to animal species [4]. In the second approach, researchers analyze COVID-
19 data using statistical and machine-inspired time series methods as [5]. With the
advent of COVID-19, a lot of scientists apply the two approaches mention above to
describe the spread of pandemic in a given geographical area [3], [5].

In this work we use the real COVID-19 data for Bulgaria, provided by the
unified information portal for COVID-19 for Bulgaria [6]. To analyze the spread
of the pandemic in the country, we consider how the data are distributed in the
two regions: (i) in the capital and (ii) in the province. The Prophet package in R

∗Corresponding author: smgurova@parallel.bas.bg
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software is used to predict the spread of the disease in Bulgaria for a few months
ahead. The paper is organized as following: In the second section the spread of the
COVID-19 pandemic is studied for two regions in Bulgaria. Using the coronavirus
data for one year period in Bulgaria, in the third section we apply an Automatic
Forecasting Procedure described in the Prophet package in order to predict the
spread of the pandemic for two months ahead. The last section summaries the
results and outline the future work.

2 Analysis of COVID-19 data for Bulgaria

Let us introduce a “daily infection rate” in percentages, which is defined as the ratio
between “daily positive cases” and “daily tests performed” multiplied by 100. Let
us introduce also “7-daily infection rate” and “14-daily infection rate” by averaging
the values of the “daily infection rate” per seven and fourteen days, respectively. To
analyse the spread of the infection in Bulgaria for the period from 1st of June 2020
to 3rd of May 2021, we consider the data from the official governmental COVID-19
portal [6], where they are aggregated daily. We note the restrictions imposed by the
Bulgarian government to reduce the spread of infection were too weak even when
the waves reach their peaks, while many European countries, including Bulgaria’s
neighbors went into full lockdown.

Figure 1: Percentage of positive cases with respect to the tests performed on a daily,
7-daily and 14-daily basis

The trend of the spread of the coronavirus infection by a daily infection rate,
7-daily infection rate and 14-daily infection rate is presented in Figure 1 in the
country for the period of 11 months while in Figure 2 we compare the daily, 7-daily
and 14-daily positive cases in Sofia-city and the province.

The presented pictures clearly demonstrate three waves of the spread of the
infection with 3 peaks around the end of July 2020, the end of November 2020
and the end of March 2021. We see that the third wave is twice as weak as the
second wave, see Figure 1. This is explained by twice as many tests performed and
that more than 1 million people have already met the virus and built up immunity,
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(a) (b)

Figure 2: Comparison of (a) daily positive cases in the Sofia-city and the province
and (b) 7-daily and 14-daily average positive cases in the Sofia-city and the province

although the government lifted almost all restrictions during the third wave. In
Figure 2 we observe that in the second wave the peak of the spread of the infection
in the province is delayed by two weeks, while in the third wave the two peaks of
the spread of the infection for the Sofia-city and the province are reached at one
and the same time. This can be explained by the fact that in the second wave there
is a diffuse spread of the infection from the Sofia-city toward the province while in
the third wave the change of the reproductive number is with one and the same
rate at weakened measures for the whole country.

3 Forecasting the coronavirus pandemic by using
Prophet

The analysis of time series is focused on the study of past observations of a random
variable φ(x) = φ(x1, x2, . . . , xn) in order to find a good statistical model that fits
the data. When that model is found, it can be used to predict the future values
of the random variable. In this section we consider a Prophet package from the
software R with which we can predict the spread of the infection in Bulgaria.

Using the object predict from the Prophet package in the software R, we can
predict the future values of n-daily infected rate (n=1, 7, 14). In our tests with
Prophet, we use a time series for the given period from 11 months and the future
values for forecasting are 60 days ahead, i.e. up to 2nd of July 2021. In Table 1
the three latest estimated future values of the n-daily infected rates in Bulgaria are
presented, where the supposed estimated value is ŷ which belongs to the confidence
interval [ŷlower, ŷupper].

The results presented in Figure 3 and Figure 4 show that 4th wave is born in the
next 2 months for the both regions–the Sofia-city and the province. We believe that
the peak of this 4th wave will be small and depends on the successfully applying
the vaccination plan in Bulgaria.
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date ŷ ŷlower ŷupper
2021-06-30 19.97 15.45 20.56
2021-07-01 daily infected rate 17.56 14.84 20.10
2021-07-02 16.97 14.28 19.63
2021-06-30 16.00 15.18 16.94
2021-07-01 7-daily infected rate 16.05 15.21 16.90
2021-07-02 16.09 15.19 16.95
2021-06-30 18.16 17.65 18.69
2021-07-01 14-daily infected rate 18.24 17.76 18.76
2021-07-02 18.31 17.76 18.83

Table 1: Predictive values in the last three days of 60-daily period for the n-daily
infected rates

(a) (b) (c)

Figure 3: Forecast graphs for (a) daily infection rate, (b) 7-daily infection rate and
(c) 14-daily infection rate for Bulgaria

(a) (b)

Figure 4: Forecast graphs for predicting the new positive cases in the two regions:
(a) the Sofia–city and (b) the province

4 Conclusion

In this study we present the spread of the coronavirus pandemic in the country,
the Sofia–city and the province taking the real data from the Bulgarian information
portal [6] for almost year ago. Some dependence was observed in the peaks of the
second and third wave of the regions under considerations. The Prophet package
was used to predict the spread of the disease in Bulgaria for two months ahead.
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date ŷ ŷlower ŷupper
2021-06-30 277 117.42 443.21
2021-07-01 New positive cases in Sofia-city 234 62.78 393.64
2021-07-02 221 46.37 388.29
2021-06-30 1018 527.23 1517.14
2021-07-01 New positive cases in the province 861 393.80 11329.62
2021-07-02 814 347.11 1319.68

Table 2: Forecasting values of the new positive cases in the two regions for the last
three days of 60-daily period

The results show that this statistical package can be successfully used to predict
new wave. As a future work we plan to use other time series forecasting methods
from the software R such as ARIMA, HWAAS and others to predict the spread of
the pandemic in Bulgaria.
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Abstract: In this paper, we introduce a reversible version of a genetically mod-
ified mode jumping Markov chain Monte Carlo algorithm (GMJMCMC) for infer-
ence on posterior model probabilities in complex model spaces, where the number
of explanatory variables is prohibitively large for classical Markov Chain Monte
Carlo methods. Unlike the earlier proposed GMJMCMC algorithm, the introduced
algorithm is a proper MCMC and its limiting distribution corresponds to the pos-
terior marginal model probabilities in the explored model space under reasonable
regularity conditions.

Keywords: Markov chain Monte Carlo; Mode jumping in MCMC; Genetic algo-
rithms; Bayesian Model selection; Bayesian Model averaging

AMS subject classification: 62-02, 62-09, 62F07, 62F15, 62J12, 62J05, 62J99,
62M05, 05A16, 60J22, 92D20, 90C27, 90C59

1 Introduction

A genetically modified Markov chain Monte Carlo algorithm (GMJMCMC) was
introduced [3, 6, 5] for Bayesian model selection/averaging problems when the to-
tal number of covariates (including functions of covariates) is prohibitively large.
Applications include GWAS studies with Bayesian generalized linear models [3] as
well as Bayesian logic regressions (BLR) [5] and Bayesian generalized nonlinear
models (BGNLM) [6]. If certain regularity conditions are met, the GMJMCMC
algorithm will asymptotically explore all models in the defined model spaces. How-
ever, GMJMCMC is not a proper MCMC algorithm in the sense that its limit-
ing distribution does not correspond to the marginal posterior model probabilities
and thus only renormalized estimates of these probabilities [2, 4] can be obtained.
In this paper, we introduce a reversible genetically modified Markov chain Monte
Carlo algorithm (RGMJMCMC), which modifies GMJMCMC to become a proper
MCMC method providing marginal posterior probabilities directly as Monte Carlo
estimates.

∗Corresponding author: aliaksah@math.uio.no
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2 The algorithm

Genetically Modified MJMCMC

Consider the case of a fixed predefined set of correlated features (covariates). Then
the general model spaceM is of size 2q and standard MCMC algorithms tend to get
stuck in local maxima if there are correlations between covariates [2, 4]. The basic
idea of MJMCMC [4] is to make a large jump (changing many model components)
followed by local optimization within the discrete model space to obtain a proposal.
The MJMCMC algorithm requires that all q covariates defining the model space
are potentially considered at each iteration of the algorithm. But if q is large,
it becomes impossible to specify and store all 2q models in M. The idea behind
GMJMCMC is to apply the MJMCMC algorithm iteratively to smaller sets of model
components of size s� q. Here, s is specified to be larger or equal to the maximal
possible size Q of the assumed true model in the defined model space, which is a
necessary condition to be able to use GMJMCMC [5]. This constraint also reduces

the number of models in the model spaceM to
∑Q
k=1

(
q
k

)
. As shown in Theorem 1

in [5], GMJMCMC is irreducible in the defined model space of models of size up to
s under some easy to satisfy regularity conditions. Yet, GMJMCMC is not a proper
MCMC and one cannot use the frequencies of different models in the Markov chain
to estimate their posteriors. Instead, we use the renormalized estimates [2, 4, 5, 6]
from a subspace M∗ ⊂M:

p̂(m|y) =
p(m)p(y|m)∑

m′∈M∗ p(m
′)p(y|m′)

I(m ∈M∗) , (1)

which asymptotically converge to p(m|y) as the number of iterations grows.
In GMJMCMC, we let F0 be all q input features and S0 ⊆ F0 be some subset of

them. Then, throughout our search we generate a sequence of so called populations
S1,S2, ...,STmax . Each St is a set of s features and forms a separate search space for
exploration through MJMCMC iterations. Populations dynamically evolve allowing
GMJMCMC to explore different parts of the total model space. Algorithm 2 in [5]
summarizes this procedure. The generation of St+1 given St works as follows: Mem-
bers of the new population St+1 are generated by applying certain transformations
to components of St. First, some components with low frequency from search space
St are removed using a filtration operator. The removed components are then
replaced, where each replacement is generated randomly by a mutation operator
with probability Pm, by a crossover operator with probability Pc, by a modification
operator with probability Pt or by a projection operator with probability Pp, where
Pc + Pm + Pt + Pp = 1. The operators to generate potential features of St+1 are
formally defined in [3, 5, 6].

Reversible Genetically Modified MJMCMC

The GMJMCMC algorithm described above cannot guarantee that the ergodic dis-
tribution of its Markov chain corresponds to the target distribution of interest [5].
An easy modification based on performing both forward and backward swaps be-
tween populations can provide a proper MCMC algorithm in the model space of
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interest. Consider a transition m → S ′ → m′0 → ... → m′k → m′ with a given
probability kernel. Here, qS(S ′|m) is the proposal for a new population, transitions
m′0 → ... → m′k are generated by local MJMCMC within the model space induced
by S ′, and the transition m′k → m′ is some randomization at the end of the proce-
dure as described in the next paragraph. The following theorem shows the detailed
balance equation for the suggested swaps between models.

Theorem 1. Assume m ∼ p(·|y) and (S ′,m′k,m′) are generated according to the
proposal distribution qS(S ′|m)qo(m

′
k|S ′,m)qr(m

′|S,m′k). Assume further (S,mk) are
generated according to q̃S(S|m′,S,m)qo(mk|S,m′). Let

m∗ =

{
m′ with probability min{1, amh};
m otherwise.

where

amh =
p(m′|y)qr(m|S,mk)

p(m|y)qr(m′|S ′,m′k)
. (2)

Then m∗ ∼ p(·|y).

Proof. Define p̄(m,S ′,m′k) ≡ p(m|y)qS(S ′|m)qo(m
′
k|S ′,m). Then by construction

(m,S ′,m′k) ∼ p̄(m,S,m′k). Define (m′,S,mk) to be a proposal from the distribution
qr(m

′|S,m′k)qS(S|m′)qo(mk|S,m′). Then the Metropolis-Hastings acceptance ratio
becomes

p̄(m′,S,mk)qr(m|S,mk)qS(S ′|m)qo(m
′
k|S ′,m)

p̄(m,S ′,m′k)qr(m′|S ′,m′k)qS(S|m′)qo(mk|S,m′)
which reduces to amh.

From Theorem 1, it follows that if the Markov chain is irreducible in the model
space then it is ergodic and converges to the right posterior distribution. The
described procedure marginally generates samples from the target distribution, i.e.
the posterior model probabilities p(m|y). Instead of using the approximation (1) one
can get frequency-based estimates of the model posteriors p(m|y). For a sequence of
simulated models m1, ...,mW from an ergodic MCMC algorithm with a stationary
distribution p(m|y) it holds that

p̃(m|y) = W−1
W∑
i=1

I(m(i) = m)
d−−−−→

W→∞
p(m|y), (3)

and similar results are valid for estimates of the posterior marginal inclusion prob-
abilities or any other parameters of interest [2, 4].

In practice, proposals qS(S ′|m) are obtained as follows: First, all members of m
are included. Then additional features are added by the same operators as described
in Section 2 but with St replaced by the population including all components in
m. The randomization m′ ∼ qr(m|S ′,m′k) is performed by potential swapping of
the features within S ′, each with a small probability ρr. Note that this might give
a reverse probability qr(m|S,mk) being zero if S does not include all components
in m. In that case, the proposed model is not accepted. Otherwise, the ratio of

the proposal probabilities can be written as qr(m|S,mk)
qr(m′|S′,m′k) = ρ

d(m,mk)−d(m′,m′k)
r , where

d(·, ·) is the Hamming distance (the number of components differing).
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Delayed rejection

The computationally most demanding parts of the RGMJMCMC algorithm are the
forward and backward MCMC searches. Often, the proposals generated by forward
search have a very small probability π(m′) resulting in a low acceptance probability
regardless of the way the backward auxiliary variables are generated. In such cases,
one would like to reject directly without performing the backward search. This is
achieved by the delayed acceptance procedure [1] which can be applied in our case
due to the following result:

Theorem 2. Assume m ∼ p(·|y) and m′ is generated according to the RGMJMCMC
algorithm. Accept m′ if both

1. m′ is preliminarily accepted with a probability min{1, p(m
′|y)

p(m|y) },

2. m′ is finally accepted with a probability min{1, qr(m|S,m′k)
qr(m′|S′,mk)}.

Then also m ∼ p(·|y).

Proof. It holds for amh given by (2) that

amh(m,S ′,m′k;m′,S,mk) =a1
mh(m,S ′,m′k;m′,S,mk)× a2

mh(m,S ′,m′k;m′,S,mk)

where

a1
mh(m,S ′,m′k;m′,S,mk) =

p(m′|y)

p(m|y)
, a2

mh(m,S ′,m′k;m′,S,mk) =
qr(m|S,m′k)

qr(m′|S ′,mk)

Since ajmh(m,S ′,m′k;m′,S,mk) = [ajmh(m′,S,mk;m,S,m′k)]−1 for j = 1, 2, by the
general results of [1] we obtain an invariant kernel for the target.

3 Applications

We repeat the experiments from [6] concerned with recovering the planetary mass
law (I), the 3rd Kepler’s law (II), and a logic regression example (III). We follow
the original experimental design and refer the reader to [6] for full detail. The
parallelization strategy is described in [5, 6]. The number of threads is denoted
by T in the following tables. Table 1 reports results for datasets (I) and (II).
Power, FDR, and the expected number of FP are estimated based on 100 runs of
RGMJMCMC and GMJMCMC for each number of threads, respectively. The set
of nonlinearities G2 from [6] is used in these experiments. Similarly, Table 2 gives
results for the logic regression example (III), where the set of nonlinearities G1 from
[6] is used for BGNLM.
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Table 1: Overall Power, average number of false positives (FP) and FDR for de-
tecting the planetary mass law (planetary mass as response) and 3rd Kepler’s law
(semi-major axis as response). For the former, only R3

p × ρp is considered as a

TP discovery. For the latter, F1 = (P × P ×Mh)
1
3 , F2 = (P × P ×Rh)

1
3 , and

F3 = (P × P × Th)
1
3 are counted as TPs. Results for GMJMCMC are given in

parentheses.

Planetary mass law 3rd Kepler’s law
T Power FP FDR T Power FP FDR
16 0.94 (0.93) 0.29 (0.36) 0.18 (0.22) 64 1.00 (0.99) 0.04 (0.04) 0.02 (0.02)
4 0.63 (0.69) 0.64 (0.49) 0.38 (0.34) 16 0.65 (0.83) 0.88 (0.55) 0.39 (0.22)
1 0.29 (0.42) 1.54 (1.25) 0.71 (0.58) 1 0.06 (0.14) 2.14 (1.81) 0.94 (0.86)

Table 2: Power for individual trees, overall power, expected number of FP, and FDR
are compared between RGMJMCMC (R), GMJMCMC (G) and Bayesian Logic
regression (L). Logic expressions from the data generating model are L1 = X7,
L2 = X8, L3 = X2 ∗X9, L4 = X18 ∗X21, L5 = X1 ∗X3 ∗X27, L6 = X12 ∗X20 ∗X37,
L7 = X4 ∗X10 ∗X17 ∗X30, L8 = X11 ∗X13 ∗X19 ∗X50.

T L1 L2 L3 L4 L5 L6 L7 L8 Power FP FDR
R 32 1.00 1.00 0.96 1.00 1.00 1.00 0.92 0.89 0.97 1.14 0.13
G 32 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.00 0.51 0.06
L 32 0.99 1.00 1.00 0.96 1.00 0.99 0.91 0.38 0.90 1.09 0.13

Tables 1 and 2 illustrate that in all three applications the RGMJMCMC al-
gorithm is capable of estimating the posterior marginal probabilities of different
features, and thus is able to recover the true data generative processes with rea-
sonable Power and FDR. The performance is on par with GMJMCMC for datasets
(I) and (II). For dataset (III), it is a bit worse than GMJMCMC for BGNLM but
slightly better than BLR (see logic regression example in [6]).

4 Discussion

In this paper, we have introduced RGMJMCMC and proved its theoretical proper-
ties. We have also repeated some experiments described in [6] to assess RGMJM-
CMC in terms of model identification. In an extended publication, it would be of
interest to additionally evaluate the accuracy of posterior estimates and the perfor-
mance in terms of out-of-sample prediction accuracy.
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Abstract: The Lorenz regression procedure introduced by [4] aims to estimate
the explained Gini coefficient, a quantity with a natural application in the field of
inequality of opportunity. In this paper, we introduce a lasso-type estimator for the
explained Gini coefficient and discuss the selection of the regularization parameter.
The performance of the procedure is compared to an oracle estimator on simulated
data. Finally, an illustration on real-data is provided.
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1 Introduction

The concept of inequality of opportunity (IOP) has been defined by [6] in order to
quantify unjust socioeconomic inequalities. More precisely, IOP measures the extent
of inequality in an economic advantage which can be attributed to circumstances,
i.e. variables over which individuals have no control. In this literature, one difficulty
arises from balancing the normative measurement of inequality with the statistical
modelling of the advantage. Indeed, the first aspect tends to call for simple linear
or log-linear regression models.

Before introducing the Lorenz regression procedure, we give the definition of
the Gini coefficient. Denote the expected value by E[·] and let Y be a continuous
random variable such that 0 < E[Y ] <∞. The Gini coefficient is an index ranging
from 0 (perfect equality) to 1 (perfect inequality), formally defined as

GiY :=
2C[Y, FY (Y )]

E[Y ]
,

where FY is the CDF of Y and C[·, ·] is the covariance operator.
Let (Y,X) ∈ R× Rp where Y is a response such that 0 < E[Y ] <∞ and X is a

vector of covariates. In our example, Y is the economic advantage and X gathers
the circumstances. We start from the following single-index model

E[Y |X = x] = H(xᵀθ0), (1)

∗Corresponding author: alexandre.jacquemain@uclouvain.be
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where H is an increasing link function and θ0 is a vector of unknown parameters,
with parameter space Θ0 constrained in order to ensure identifiability. Introduced
by [4], the Lorenz regression estimates the explained Gini coefficient, defined as

GiY,X := max
θ

2C[Y, Fθ(X
ᵀθ)]

E[Y ]
=

2C[Y, Fθ0(Xᵀθ0)]

E[Y ]
= GiH(Xᵀθ0),

where the last two equalities arise by using (1) and Theorem 3.1 from [3]. E[Y |X =
x] predicts the advantage of an individual with circumstances x. The extent of
inequality in the distribution of E[Y |X] thus provides information on IOP. The more
inequality, the more the circumstances bear an impact on the expected income and
hence, the greater IOP is. Since GiY,X corresponds to the Gini coefficient of E[Y |X]
assuming the single-index model, we judge it a natural measure of IOP. Furthermore,
the relationship between Y and X is semiparametric and, hence, more flexible than
usual parametric methods. Given an iid sample (Y1, X1), . . . , (Yn, Xn) of size n with
the same distribution as (Y,X), the vector θ0 and GiY,X are consistently estimated
with

θ := arg max
θ

1

n(n− 1)

∑
i 6=j

Yi1{Xᵀ
i θ > Xᵀ

j θ}, (2)

GiY,X :=
2

n2

∑
i6=j

Yi

Y
1{Xᵀ

i θ > Xᵀ
j θ} −

n− 1

n
, (3)

where 1{·} denotes the indicator function and Y is the sample average. The esti-
mator θ is a special case of the monotone rank estimator proposed by [2], which
derived its asymptotic properties.

Similarly to the R2 in linear regression, it is easy to see that GiY,X will never
decrease as we introduce new covariates. In a sparse setup, where some of the
covariates have no influence on the response, an estimation on the full model will
lead to an overfit of the explained Gini coefficient. In this paper, we tackle this
issue by using an L1 penalized procedure. We argue that it suits perfectly the
setup explained above. First, it makes it possible for an economist to include many
covariates without inducing an overestimation of the explained Gini coefficient.
Second, it also provides a selection method for the relevant features.

The rest of this paper is structured as follows. In Section 2, we introduce a lasso-
type estimator for the Lorenz regression and discuss the choice of the regularization
parameter. Section 3 compares the performance of the method with an oracle
estimator. Finally, a real-data example is presented in Section 4.

2 The penalized Lorenz regression

In this section, we introduce the penalized Lorenz regression. We borrow the idea
developped by [5] for the maximum rank correlation estimator. It consists in replac-
ing the original discrete objective function by a differentiable approximation and
adding a penalty part to it. This procedure has the double advantage of introducing
penalization and facilitating the numerical computation.
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A lasso-type estimator for θ0 is given by

θ̂(λ) := arg max
θ

{
G(θ)− λ

p∑
k=1

|θk|

}
,

where λ > 0 is a regularization parameter and G(θ) is a smooth approximation of
the indicator function displayed in (2). Formally,

G(θ) :=
1

n(n− 1)

∑
i 6=j

YiSσ(Xᵀ
i θ −X

ᵀ
j θ),

where Sσ(t) = 1/(1 + exp(−t/σ)), and σ is a tuning parameter determining the
accuracy of the approximation. Following [7], we allow σ to depend on n and set it
to σ = 1/

√
n. An estimator for the explained Gini coefficient is then obtained by

plugging θ̂(λ) in (3).
The numerical implementation can be carried out using the FABS algorithm

developped by [7] for nonconvex loss functions and the adaptive Lasso penalty. The
method starts with a very large value for λ, imposing full sparsity, and then allows
the penalty parameter to decrease. Hence, it produces a whole solution path ranging
from high to low sparsity. For each λ, the optimization problem is solved using a
coordinate-descent algorithm.

In practice, an optimal regularization parameter can be determined via cross-
validation. Another possibility lies in the use of an information criterion, as pro-
posed by [5]. In this respect, we set λn as the one which maximizes

ICλ := log(G(θ̂(λ)))− pIC(n)kλ,

where kλ is the number of covariates selected using λ and pIC(n) is the penalty asso-
ciated to the information criterion. For a BIC-like criterion, pIC(n) = log(n)/(2n).
For an AIC-like criterion, pIC(n) = 1/n. We evaluate the performance of these
alternative methods in Section 3.

3 Monte-Carlo Simulations

In this section, we evaluate the performance of the procedure presented in Section 2
by means of Monte-Carlo simulations. We use the following data generating process
(DGP)

Yi = H(Xᵀ
i θ)εi,

where i = 1 . . . , n = 100 and
∑
k |θk| = 1. X is a multivariate normal with mean 0,

unit variance and a correlation matrix following an AR(1) process with correlation
parameter ρ = 0.3. The variable εi is a lognormal noise with mean 1 and a variance
set to ensure a signal-to-noise ratio of 3. Finally, we use the following link function

H(t) = 1000 exp

(
1 +

1

2

(
t

3
− 1

)3
)

.
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We consider a low-dimensional scenario with p = 20 and a high-dimensional one
with p = 120. In both cases, 5 covariates are active. We simulate from the DGP
2000 different datasets and focus on selecting λ by BIC and AIC-like scores, CV and
benchmark the performance of the penalized procedure against an oracle estimator
that has knowledge about which covariates are active.

The performance of the procedure is assessed first by the square-root of the MSE
of the explained Gini coefficient (RMSE.Gini). Moreover, we judge the quality
of the model selection by the true positive rate (TPR), giving the percentage of
selected covariates which are truly active, and by the false positive rate (FPR),
which represents the percentage of selected variables which are not active. The
results are displayed in Table 1. In terms of model selection, we observe a clear
tradeoff between TPR and FPR. Cross-validation yields the best performance in
terms of TPR but the worst in terms of FPR. The converse story holds for the BIC.
Finally, the AIC selection seems to offer the best balance between these two aspects.
Concerning the estimation of the explained Gini, the AIC yields once again the best
performance, and even slightly outperforms the oracle.

Table 1: Comparison with an oracle estimator

p = 20 p = 120
RMSE.Gini TPR FPR RMSE.Gini TPR FPR

BIC 2.25 82.4 2.0 2.27 75.3 0.6
AIC 2.23 90.6 9.0 2.22 82.5 2.2
CV 2.28 92.5 23.8 2.37 83.6 5.0
Oracle 2.25 / / 2.26 / /

Table 2: Estimation of θ0 in the penalized and unpenalized cases

Unpenalized Penalized
Years of education .027 .028
Sex (reference is male) -.100 -.101
Married (reference is not married) .051 .046
Ethnicity (reference is Caucasian)

Hispanic -.066 -.065
Black -.057 -.055

Region (reference is South) -.044 -.043
Union (reference is nonunionized) .146 .146
Occupation (reference is tradesperson
or assembly line worker)

Technical or professional .139 .142
Services -.028 -.029
Office and clerical .041 .041
Sales -.001
Management and administration .195 .203

Sector (reference is other)
manufacturing and mining .053 .053
construction .051 .048
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4 Real data example

This illustration is based on a random sample of wages data from the 1985 Cur-
rent Population Survey constructed in [1]. Besides hourly wages, the data provide
information on 14 covariates for 534 individuals. A description of the covariates is
given in Table 2. The Gini coefficient of wages is of 29.5%. Table 2 displays the
estimated vector of coefficients for the penalized and unpenalized Lorenz regression.
Taking into account the results of the last section, the regularization parameter is
chosen by AIC. As we can observe, only one covariate is not included in the model
selection. The estimated explained Gini coefficient is of 18.02% in the unpenalized
case and of 17.99% in the penalized regression.
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1 Introduction

Markov switching models (MSM) [11], are capable of characterizing non-linear be-
haviors in different regimes by permitting switching between multiple structures.
The switching is memoryless, due to the Markov property, and the waiting time
till the next switch follows, in the discrete case, typically a geometric distribution.
As a result, the regime switching can be modeled by a finite-state Markov chain.
Nowadays, MSM constitute a powerful modeling tool that is being used in several
scientific fields such as Financial [6], Epidemiology [3], etc. The concept of MSM
though, comes with some serious drawbacks since (a) the memoryless property that
governs Markov chains is often inadequate for real-life problems [12], and (b) there
are cases where the sojourn time and the associated distribution at a certain state
plays a crucial role for modeling data such as those of time-series [4].

A solution to the aforementioned problems, could be provided by semi-Markov
switching models (semi-MSM). As stated by Hunt and Devolder [8], Markov chains
constitute a subclass of semi-Markov chains [9] and consequently semi-MSM should

∗Corresponding author: ekalligeris@aegean.gr
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perform at least as good, if not better, as the Markov switching models. One
could argue, that this feature alone constitutes a powerful and motivating factor to
consider semi-MSM instead of MSM.

In this work, we discuss the concept of discrete time semi-MSM and we establish
the basic aspects of such models. The rest of the paper is organized as follows.
In Section 2, the discrete time semi-MSM of conditional mean with covariates is
presented. In Section 3, we make parameter inference and discuss the problem of
noncensored likelihood. Finally, we conclude by summarizing the work done.

2 Discrete Time semi-Markov Switching Model

Let us assume a random system that has a finite state space E = {1, ..., N}, N <∞,
for which the time evolution is governed by a stochastic process Z = (Zt)t∈N.
In addition, let us denote by S = (Sk)k∈N the successive time-points when state
changes in (Zt)t∈N and by J = (Jk)k∈N the associated visited states at these
time-points.

Definition 2.1 (Markov renewal & semi-Markov chain)

If (J, S) = (Jk, Sk)k∈N satisfies the relation

P (Jk+1 = j, Sk+1 − Sk = t|J0, J1, ..., Jk;S1, ..., Sk)

= P (Jk+1 = j, Sk+1 − Sk = t|Jk), j ∈ E, t ∈ N,

(1)

then Z = (Zt)t∈N is a semi-Markov chain associated to the Markov renewal chain
(J, S) = (Jk, Sk)k∈N, where

Zt = JN(t) ⇔ Jk = ZSk ,

with N(t) = max{k ∈ N|Sk+1 ≤ t}, t ∈ N, being the counting process of the
number of jumps in the time interval (0, t]. As a result, Zt represents the state of
the system at time t [10]. The fact that (Jk, Sk)k∈N is a Markov renewal chain,
implies that (Jk)k∈N is an embedded Markov chain. Note that throughout this
paper, we consider (J, S) to be homogeneous that is equation (1) is independent of
k.

In order to provide some basic definitions, we introduce now the proper nota-
tion. Consider l, k ∈ N, l ≤ k, two nonnegative integers and let yl, ..., yk ∈ A =
{1, ..., s}, s < ∞. We will denote by Y kl the vector Y kl = (Yl, ..., Yk) and we will
write {Y kl = ykl } for the event {Yl = yl, ..., Yk = yk}. In the case of a single
state within the state space, i.e., yl, ..., yk ≡ y ∈ A, we denote by {Y kl = y} the
event {Yl = y, ..., Yk = y}. Finally, the notation {Y kl = ·} refers to the event
{Yl = ·, ..., Yk = ·}.

It is obvious that all the above notations in terms of the chain Y can be easily
expressed in terms of the chain Z.
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Definition 2.2 (Hidden semi-Markov chain of order k)

Let Y = (Yt)t∈N be a homogeneous Markov chain of order k, k ≥ 1, conditioned
on the semi-Markov chain Z which means that ∀y0, ..., yk ∈ A, i ∈ E, t ∈ N∗:

P (Yt+1 = yk|Y tt−k+1 = yk−1
0 , Y t−k0 = ·, Zt+1 = i, Zt0 = ·)

= P (Yt+1 = yk|Y tt−k+1 = yk−1
0 , Zt+1 = i).

(2)

The chain (Z, Y ) = (Zt, Yt)t∈N is called a hidden semi-Markov chain of order
k and the probability in (2) is known as the emission probability matrix of the
conditional Markov chain Y .

If in (2) the observation process is characterized by the conditional independence
property, then ∀y ∈ A, i ∈ E, t ∈ N∗:

P (Yt = y|Y t−1
0 = ·, Zt = i, Zt−1

0 = ·)

= P (Yt = y|Zt = i),

where
∑
yk
P (Yt+1 = yk|Zt+1 = i) = 1.

For more information on the topic of hidden semi-Markov chains the interested
reader may refer to [2].

Based on the Definition 2.2, we now define the semi-Markov switching model of
conditional mean with covariates.

Let us suppose a series of observations
{
yT−1

0

}
and

{
zT−1

0

}
a hidden state

variable which follows a first order semi-Markov chain which is characterized by
the following semi-Markov kernel q :

qij(t) = P (Jk = j, Sk+1 − Sk = t|Jk−1 = i).

Definition 2.3 (Discrete Time semi-Markov Switching Model of Condi-

tional Mean with Covariates)

A semi-Markov switching model of conditional mean with covariates Ω1, ...,Ωq for
yt, t ∈ N∗, is defined by:

yt = czt +

p∑
i=1

φiztyt−i +

q∑
d=1

γdztΩd + εt, t = 0, 1, ..., T − 1, (3)

where czt is a switching intercept, φizt , i = 1, ..., p, are autoregressive (AR) switching
coefficients, γdzt the coefficient associated with the Ωd covariate, d = 1, ..., q, and εt
are i.i.d zero-mean normally distributed random variables with variance σ2

zt .
Under the model in (3) and for a N -state setting, one could consider various

underlying (discrete) distributions for the waiting (sojourn) times between states.
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3 Parameter Inference

Consider a series of observations
{
yT−1

0

}
and

{
zT−1

0

}
a hidden state variable as in

Section 2. Moreover, suppose that the number of sojourn (waiting) times, denoted
by v0, v1, ..., vR, fulfills the obvious equality:

v0 + v1 + ...+ vR = T.

The relationship between the sojourn times and the state sequence can be sim-
plified by reducing the entire sequence of states z0, z1, ..., zT−1 to the sequence of
states j0, j1, ..., jR which have been visited:

j0 := {z0, z1, ..., zv0−1}
j1 := {zv0 , zv0+1, ..., zv0+v1−1}
...

jR := {zv0+v1...+vR−1
, zv0+v1...+vR−1+1, ..., zT−1}.

Ferguson in [5] introduced the classical form of the complete (noncensored) data
likelihood which allows only for sequences in which the last observation coincides
with an exit from the hidden state. This form though, comes with some limitations
since the summation includes all the possible paths considered in the complete-
data likelihood and as a result the probability of obtaining an analytical solution
is negligible. Furthermore, it assumes that the exit from a state coincides with the
end of the sequence of observations Y T−1

0 since the sojourn times vr, r = 0, ..., R
sum up to T . This results in the forbiddance of the consideration of semi-Markov
chains with absorbing states which is unrealistic for most applications. Considering
the aforementioned, Guédon in [7] proposed the implementation of the survivor
function into (3):

L′complete
(
zT−1

0 , Y T−1
0 |θ

)

=

T−1∑
t=0

log

R−1∑
r=1

f(yt|Zt, Y t0 ; θ)Pj0wj0(v0)Pjr|jr−1
wjr−1

(vr−1)PjR|jR−1
WjR(vR),

(4)

where

Wjr (vr) =
∑
ur≥vr

wjr (ur),

is the survivor function for the sojourn time in state jr and θ ∈ Rm,m ∈ N, is the
a parameter vector.

The estimator resulting through L′complete
(
zT−1

0 , Y T−1
0 |θ

)
is known as partial

likelihood estimator. Estimating the likelihood of semi-Markov switching model con-
stitutes an incomplete (censored) data problem since the only accessible quantity is
the observations. This fact makes the Expectation-Maximization (EM) algorithm
the most suitable ML estimation technique for such models. For more on the esti-
mation of censored semi-Markov switching models the interested reader may refer
to [2, 7].
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4 Conclusion

In this work, we discussed the concept of semi-Markov switching models under
the discrete time framework. The fundamental aspects of such models were pre-
sented. To that end, the proper notations as well as the formulation of discrete time
semi-Markov switching models of conditional mean with covariates were provided
together with the associated parameter inference.

Acknowledgements: The authors wish to express their appreciation to the Edi-
tor and anonymous Referee for their comments, suggestions, and recommendations
which helped in improving both the quality and the presentation of the manuscript.
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1 Introduction

Many types of data in different fields of science can be naturally represented and
modeled as undirected graphs. In real-world networks it is common to observe
community structure, i.e., some groups of nodes are more densely connected to
each other than to the rest of the nodes. This can be naturally explained in the
context of social networks, e.g., with common hobbies, location, or occupation.
Since communities can be formed by many different types of mechanisms, it is often
desirable that a network model allows the communities to overlap. A number of
models with this property have been presented in the literature – we only mention
the active and passive random intersection graphs [4], which have some features of
real-world networks, such as non-trivial clustering, power-law degree distributions,
and degree-clustering correlations [1]. These models have also motivated the model
studied in this work.

We now define the thinned random intersection graph. Let n be the number
of nodes, m the number of communities, π the community size distribution, and q
the edge probability within the communities. Each community Ck, k = 1 . . .m, is
generated independently of others as follows:

1. Generate the number of nodes, |V (Ck)| from the distribution π.

2. Choose the node set V (Ck) uniformly at random from the subsets of [n] =
{1, . . . , n} of size |V (Ck)|.

∗Corresponding author: joona.karjalainen@aalto.fi
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3. Generate the edges between the node pairs of V (Ck) independently with prob-
ability q.

The resulting graph G is defined as the superposition of the communities:

V (G) = [n], E(G) =

m⋃
k=1

E(Ck).

Setting q = 1 and letting π be arbitrary gives the passive random intersection graph.
The motivation for our model is that the assumption q = 1 would imply that each
community forms a clique. The parameter q may be viewed as a relaxation constant,
or as a measure of how closely the communities resemble cliques.

When π = Bin(n, p) (and q ∈ (0, 1]), the indicators I(i ∈ V (Ck)) are mutually
independent, i = 1 . . . n, k = 1 . . .m. It was noted in [6] that in this case, we have
that asymptotically

q ≈ τ(1 +
λ2

σ2 − λ
),

where τ is the clustering coefficient 3#triangles
#2-stars , λ is the average degree, and σ2 is

the degree variance. This observation directly suggests a moment-based estimator.
Namely, since the λ, σ2 and τ can be easily computed from data (i.e., the graph
G), the above expression can be evaluated, and the resulting estimator q̂ is also
consistent if these empirical quantities are sufficiently well-behaved. In this paper
we show that the parameter q can be consistently estimated with more general,
non-binomial community size distributions. The second result of this paper gives a
parameter estimator for π.

A generalization of the model has been studied in [2, 3], where q is allowed to be
random and depend on the size of the community. We only note here that under
certain assumptions, the asymptotic degree distribution is known to be a compound
Poisson distribution, and that an explicit formula for the limiting assortativity
coefficient is known.

2 Large-scale assumptions and notation

A large network is modeled by letting n → ∞, which results in a sequence of
independent graphs (G1, G2, . . .), indexed by the number of nodes. The number of
communities is assumed to grow linearly with the number of nodes, m/n → µ for
some number µ ∈ (0,∞), which results in non-trivial average degrees and clustering
coefficients. The dependence of m on n is omitted in the notation. Denoting
the communities by Cn,k, the graph Gn is defined by V (Gn) = [n], E(Gn) =⋃m
k=1E(Cn,k).

The community size distribution is allowed to vary with n, and is assumed to

converge weakly to a limit, πn
w→ π. For simplicity, we assume that q does not

depend on n, although we expect the results to remain largely unchanged if we
assume convergence to a constant in (0, 1].
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We denote (n)k = n(n− 1) . . . (n− k+ 1) for a constant n. For a distribution π
and a random variable X ∼ π we denote (π)k = E [X(X − 1) . . . (X − k + 1)]. The
notation X = oP(1) is used to mean ”X → 0 in probability as n→∞”.

3 Moment-based parameter estimators

We present estimators for the thinning parameter q and the community size distri-
bution π. The estimators can be evaluated based on the numbers of edges, 2-stars
and triangles.

Denote by Xi,j the edge indicator I({i, j} ∈ E(Gn)), and by di =
∑n
j=1Xi,j the

degree of node i in Gn. The subgraph counts for the edges, 2-stars, and triangles
are given by

NK2
=

∑
1≤i<j≤n

Xi,j , NS2
=

n∑
i=1

∑
j<k

Xi,jXi,k, NK3
=
∑
i<j<k

Xi,jXi,kXj,k.

Natural estimators of the mean degree, degree variance, and clustering coefficient
are given by

λ̂ =
1

n

n∑
i=1

di =
2

n
NK2 , σ̂2 =

1

n

n∑
i=1

(di − λ̂)2, τ̂ = 3
NK3

NS2

.

Theorem 1. Let m → ∞, n → ∞, and m/n → µ ∈ (0,∞). Assume that πn
converges weakly to a distribution π on N with (πn)3 → (π)3 ∈ (0,∞). Then

q̂ := τ̂
(

1 +
λ̂2

σ̂2 − λ̂

)
= q + oP(1).

In the following we consider a family of single-parameter distributions. Let
P ⊂ R, and let D = {νp}p∈P be a family of distributions on N indexed by the
parameter p. We require an identifiability condition: there must exist a function f
such that

f

(
(νp)3

(νp)2

)
= p, ∀p ∈ P. (1)

Example 1. Assume that π is a Pareto-mixed Poisson distribution with shape
parameter α > 3,

π(k) =

∫ ∞
1

αx−(α+1)x
ke−x

k!
dx, k ∈ {0, 1, 2, . . .}.

With the auxiliary random variables X ∼ Poi(Y ) and Y ∼ Par(α, 1) we obtain

(π)2 = E [E [X(X − 1) | Y ]] = E [Y 2] =
α

α− 2
, (π)3 = E [Y 3] =

α

α− 3
.
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Hence, (π)3
(π)2

= α−2
α−3 , which gives α =

3
(π)3
(π)2
−2

(π)3
(π)2
−1

. Thus, for the family of Pareto-mixed

Poisson distributions with shape parameter α > 3, the function f(x) = I(x 6=
1) 3x−2

x−1 satisfies (1).

Example 2. Consider a Zipf’s law of the form

π(k) =
k−s∑∞
n=1 n

−s , k ∈ {1, 2, . . .},

parameterized by s > 4. Denoting the Riemann zeta function by ζ(s) =
∑∞
n=1 n

−s,
we may then define f(x) as the solution to the equation

x =
ζ(s− 3)− 3ζ(s− 2) + 2ζ(s− 1)

ζ(s− 2)− ζ(s− 1)
,

and solve it numerically.

The following result gives an estimator for the parameter p of the limiting com-
munity size distribution π. For large n, this estimate may then be used to describe
the community size distribution in an observed graph.

Theorem 2. Let m → ∞, n → ∞, and m/n → µ ∈ (0,∞). Assume that πn
converges weakly to a distribution π ∈ D with (πn)3 → (π)3 ∈ (0,∞). Let f : R→ R

be a function that satisfies (1). If f is continuous at (π)3/(π)2, then f
(
σ̂2−λ̂
λ̂q̂

)
=

p+ oP(1).

4 Proofs

Proof of Theorem 1. A simple calculation shows that

σ̂2 =
1

n

n∑
i=1

(di − λ̂)2 =
2

n
NK2

+
2

n
NS2
− 4

N2
K2

n2
. (2)

Hence,

q̂ = τ̂

(
1 +

λ̂2

σ̂2 − λ̂

)
= 3

NK3

NS2

(
1 +

4N2
K2

2nNS2 − 4N2
K2

)
. (3)

Since πn → π weakly and (πn)3 → (π)3 ∈ (0,∞), it follows from [5] (Theorem 4.2)
that

NR = (1 + oP(1))ENR, R = K2, S2,K3, (4)
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and by [6] (Propositions 1 and 2)

ENK2 =

(
n

2

)
m

(π)2

(n)2
q(1 +O(n−1)) =

1

2
m(π)2q(1 +O(n−1)), (5)

ENS2
=

1

2
q2

(
m(π)3 +

(m)2

(n)2
(n− 2)(π)2

2

)
(1 +O(n−1)), (6)

ENK3
=

1

6
q3m(π)3(1 +O(n−1)). (7)

The claim follows (after simple but tedious calculations) by the continuous mapping
theorem and (3), (4) and (5)–(7). By using the same equations, one may verify that

the denominator σ̂2− λ̂ in the expression of q̂ converges in probability to a nonzero
constant.

Proof of Theorem 2. Consider the expression σ̂2−λ̂
λ̂q̂

. Inserting the definitions of σ̂2

and λ̂, and recalling that q̂ = q + oP(1) we obtain that

σ̂2 − λ̂
λ̂q̂

=
2
nNS2

− 4
N2
K2

n2

2NK2

n q(1 + oP(1))
.

It now follows from (4)–(6), together with the continuous mapping theorem, that
σ̂2−λ̂
λ̂q̂

= (π)3
(π)2

+ oP(1). Since by assumption f is continuous at (π)3/(π)2 with

f((π)3/(π)2) = p, the claim follows by applying the continuous mapping theorem
again.
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Abstract: Spatial point pattern is a collection of points observed in a bounded
region of d-dimensional Euclidean space, d ≥ 2. Usually, d = 2 or d = 3. Individual
points then represent e.g. observed locations of cell nuclei in human or animal
tissue, nests of a specific bird species etc. Popular tools for point pattern analysis
are functional summary characteristics describing different features of the complex
point pattern structure via functions of one or more arguments. Thus, we can benefit
from the link between a point pattern and the corresponding empirical value of a
chosen functional characteristic. This paper presents a brief overview of classical
techniques from functional data analysis that can be effortlessly adapted to the
context of point pattern data.

Keywords: Point processes, dissimilarity measures, multidimensional scaling, su-
pervised classification, data depth.

AMS subject classification: 60G55, 62H30

1 Introduction

Spatial point processes, studied within the scope of spatial statistics, have been
recently given more and more attention in a broad range of scientific disciplines,
including biology, statistical physics, or material science [5]. They are used to model
locations of objects or events randomly occurring in the d-dimensional Euclidean
space, d ≥ 2. We distinguish between the random model, referred to as point
process, and its realization called point pattern.

Functional summary characteristics play a fundamental role in the whole process
of investigating point patterns, from exploratory analysis to parameter estimation
and hypothesis testing. With the increasing availability of point pattern data,
many functional characteristics have been developed to capture various features of
the data that can be relevant to the problem at hand.

We focus on the link between a point pattern and the corresponding empirical
value of a selected functional characteristic. Thanks to this connection, we can
analyze functional data instead of the original patterns. This brings new perspec-
tives to the field of spatial statistics; well-developed methods from functional data
analysis can be applied, including supervised classification [3] or ranking techniques
connected with functional depth [8].

∗Corresponding author: konasova@karlin.mff.cuni.cz
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2 Spatial point patterns

This section gives the necessary definitions concerning spatial point processes. We
closely follow the book [10]; foundations of the point process theory are explained
to a greater extent in [2]. Fix d ≥ 2.

We define a simple point process X as a random locally finite subset of Rd, where
each point x ∈ X corresponds to a specific object or event occurring at the location
x ∈ Rd. As an illustration with d = 2, one can think about modeling random
locations of centers of cell nuclei in human tissue. In what follows, we distinguish
the random element X (point process) and its realization X (point pattern).

To describe various features of X, all kinds of functional summary characteristics
have been developed. It is far beyond the scope of this paper to list them all; we
focus on the pair correlation function g mainly because of its widespread use in
practical applications. Before introducing g itself, we define some moment proper-
ties of X.

The intensity function λ(·) is a non-negative measurable function on Rd such that
λ(x) dx corresponds to the probability of observing a point of X in a neighborhood
of x with infinitesimally small area dx. If X is stationary (distribution invariant
w.r.t translations in Rd), then λ(·) = λ is a constant function and the constant λ is
called the intensity. In this case, λ is interpreted as the expected number of points
of X occurring in a set with unit d-dimensional volume. Similarly, the second-order
product density λ(2)(·, ·) is a non-negative measurable function on Rd×Rd such that
λ(2)(x, y) dx dy corresponds to the probability of observing two points of X jointly
occurring at neighborhoods of x and y with infinitesimally small areas dx resp. dy.

Assuming λ and λ(2) exist for the process X, the pair correlation function g(x, y)
is defined as λ(2)(x, y)/(λ(x)λ(y)), whenever λ(x)λ(y) > 0. If λ(x) = 0 or λ(y) = 0,
we set g(x, y) = 0. We write g(x, y) = g(x− y) whenever g is translation invariant.
For the Poisson point process, a theoretical model for points randomly placed in
space without any interactions among the points, λ(2)(x, y) = λ(x)λ(y) and g ≡ 1.
Thus, g(x, y) quantifies how likely it is in the process X to observe two points jointly
occurring in infinitesimally small neighbourhoods of x and y, compared to the ”no
interactions” benchmark.

Other popular characteristics are based on g, e.g. its cumulative counterpart
traditionally called the K-function. Others are based on inter-point distances, such
as the nearest neighbour distance distribution function G and the spherical contact
distribution function F [10].

While analyzing point patterns, empirical estimators of the theoretical charac-
teristics are needed. A comprehensive list is given in [5, 10]. Estimators of g, K, G
and F are implemented in the R package spatstat [1].

3 Multidimensional scaling, supervised classifica-
tion

This section presents a short illustration of two well-established methods in the func-
tional data context that can be easily modified to the point pattern setting. They
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have a point in common: a mapping quantifying how dissimilar two point patterns
(or functions) are is required.

For real-valued functions f1, f2 defined on B ⊂ R, a commonly used dissimilarity
measure is δ(f1, f2) =

∫
B
|f1(x)− f2(x)|2 dx, fulfilling all the properties of a metric

except from δ(f1, f2) = 0 ⇐⇒ f1 = f2 [3]. If f1 and f2 are two cumulative
distribution functions, then δ is the Cramér-von Mises test statistic.

Let X and Y be two point patterns observed on (not necessarily identical)
bounded regions WX ,WY ⊂ Rd. If we select a functional characteristic f and de-

note by f̂(X , r) the value of f(r), r ∈ R, estimated from X on WX , we can

measure dissimilarity between f̂(X , ·) and f̂(Y, ·) instead of comparing X and Y
directly. The dissimilarity measure based on f is then defined as δ[f ](X ,Y) =

δ
(
f̂(X , ·), f̂(Y, ·)

)
=
∫ rmax
rmin

|f̂(X , r) − f̂(Y, r)|2 dr, where rmin < rmax are given

constants depending on the size and shape of WX , WY .
Dissimilarities δ[f ] can be visualized using the multidimensional scaling (MDS).

This technique takes elements of a high-dimensional space and visualizes them as
points in Rm (m ≥ 1 small), in such a way that the Euclidean distances in Rm

are approximately proportional to the original dissimilarities. For a collection of
point patterns {X1, . . . ,Xn}, let D be a symmetric, hollow matrix composed of
non-negative elements δi,j = δ[f ](Xi,Xj). We want to find an n-tuple of points
z = (z1, . . . , zn) ∈ (Rm)n so that z minimizes a predefined loss function called stress
[4]. To solve this optimization problem, a strategy known as SMACOF (Scaling by
Majorizing a Complicated Function [4]) is used. Note that D is not required to be
an Euclidean distance matrix (this is required for the classical MDS [12]). In the
software R, MDS via SMACOF is implemented in the package smacof [7].

For illustration, set d = 2 and consider a collection Γ of 40 patterns observed
on a unit square containing 20 realizations of stationary Poisson point process Π
and 20 realization of stationary Thomas process X, the latter exhibiting attractive
interactions among pairs of points [10]. Sample realizations can be seen in Fig. 1.
For ease of presentation, we fix the intensity of Π and X to be 120, and we consider
X to be a model with one parameter σ with small values of σ indicating strong,
short-range attractive interactions.

σ = 0.02σ = 0.05σ = 0.10Poisson
Figure 1: Realization of stationary Poisson point process and stationary Thomas
process with parameter σ = 0.02, 0.05, 0.1.

Fig. 2 (left) shows dissimilarities based on δ[g] among patterns in Γ visualized
in R2 with the help of MDS. Parameter σ is set to be 0.05. Realizations of Π
exhibits low within-group dissimilarities and are well-separated from the group of
realizations of X. On the other hand, the presence of attractive interactions among
pairs of points causes larger variability of the within-group dissimilarities for the
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group of realizations of X.
Fig. 2 (right) shows average misclassification rates (MCRs) corresponding to

supervised classification of realizations of Π and X. For each σ between 0.02 and
0.2, dissimilarities among realizations of Π and X(σ) are computed, and class mem-
bership (Poisson vs Thomas) is predicted based on the kernel regression algorithm
for functional data [3]. To train the algorithm, a training set of patterns with
known labels is needed. Individual MCRs are computed from another set of la-
beled patterns, called testing set, by comparing the true and the estimated labels.
We perform 100 independent repetitions of the experiment and take the empirical
average of the individual MCRs. For σ < 0.1 (beyond 0.1, realizations of Π and
X(σ) are indistinguishable on the unit square), satisfactory results are obtain even
for a small number of points (120 on average) per pattern. Also, the algorithm’s
behaviour is in coherence with the MDS visualization; large within-group dissimi-
larities make the incoming realization of X(σ) harder to label correctly (compared
to the realization of Π), see [6] for more details.
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Figure 2: Left: Coordinates of 40 points in R2 are plotted, each point represent-
ing one element from Γ (realizations of Π = triangles, realizations of X = circles).
These coordinates are obtained by applying MDS on a matrix of dissimilarities δ[g]
among the elements of Γ. The Euclidean distances among the 40 points are approx-
imately proportional to the dissimilarities δ[g]. Right: Average misclassification
rates (together with 90%-pointwise envelope) for binary classification based on δ[g].
Realizations of Π and X(σ) are classified using the kernel regression algorithm for
functional data [3].

4 Further techniques exploiting the functional
representation

When point patterns are represented by functions, dissimilarities between patterns
can be defined, as discussed above. This enables performing different exploratory
and inferential tasks for replicated point pattern data.

To name a few, apart from supervised classification and visualization using
MDS discussed in Sect. 3, one can perform unsupervised classification (clustering)
using standard techniques or determine a prototype (median pattern) by finding
argmini

∑
i6=j δ[f ](Xi,Xj) [9]. Furthermore, a ranking of patterns (represented by
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functions) can be defined using functional depth [8]. The ranking provides the
possibility of outlier detection, Monte Carlo goodness-of-of fit testing (in spatial
statistics now predominantly performed using the approach of [11]) or two-sample
tests in the spirit of the Wilcoxon rank-sum test.

Acknowledgements: This work has been supported by The Charles University
Grant Agency, project no. 1198120, and The Czech Science Foundation, project
no. 19-04412S.
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Look-ahead screening rules for the Lasso
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Abstract: The lasso is a popular method to induce shrinkage and sparsity in
the solution vector (coefficients) of regression problems, particularly when there
are many predictors relative to the number of observations. Solving the lasso in
this high-dimensional setting can, however, be computationally demanding. Fortu-
nately, this demand can be alleviated via the use of screening rules that discard
predictors prior to fitting the model, leading to a reduced problem to be solved. In
this paper, we present a new screening strategy: look-ahead screening. Our method
uses safe screening rules to find a range of penalty values for which a given predic-
tor cannot enter the model, thereby screening predictors along the remainder of the
path. In experiments we show that these look-ahead screening rules outperform the
active warm-start version of the Gap Safe rules.

Keywords: lasso, sparse regression, screening rules, safe screening rules

AMS subject classification: 62J07

1 Introduction

The lasso [6] is a staple among regression models for high-dimensional data. It in-
duces shrinkage and sparsity in the solution vector (regression coefficients) through
penalization by the `1-norm. The optimal level of penalization is, however, usu-
ally unknown, which means we typically need to estimate it through model tuning
across a grid of candidate values: the regularization path. This leads to a heavy
computational load.

Thankfully, the advent of so-called screening rules have lead to remarkable ad-
vances in tackling this problem. Screening rules discard a subset of the predictors
before fitting the model, leading to, often considerable, reductions in problem size.
There are two types of screening rules: heuristic and safe rules. The latter kind
provides a certificate that discarded predictors cannot be active at the optimum—
that is, have a non-zero corresponding coefficients—whereas heuristic rules do not.
In this paper, we will focus entirely on safe rules.

A prominent type of safe rules are the Gap Safe rules [5, 1], which use the
duality gap in a problem to provide effective screening rules. There currently exists
sequential versions of the Gap Safe rules, that discard predictors for the next step

∗Corresponding author: johan.larsson@stat.lu.se
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on the regularization path, as well as dynamic rules, which discard predictors during
optimization at the current penalization value.

The objective of this paper is to introduce a new screening strategy based on
Gap Safe screening: look-ahead screening, which screens predictors for a range of
penalization parameters. We show that this method can be used to screen predictors
for the entire stretch of the regularization path, leading to substantial improvements
in the time to fit the entire lasso path.

2 Look-Ahead Screening

Let X ∈ Rn×p be the design matrix with n observations and p predictors and y ∈ Rn

the response vector. The lasso is represented by the following convex optimization
problem:

minimize
β∈Rp

{
P (β;λ) =

1

2
‖y −Xβ‖22 + λ‖β‖1

}
(1)

where P (β;λ) is the primal objective. We let β̂λ be the solution to (1) for a given
λ. Moreover, the dual problem of (1) is

maximize
θ∈Rn

{
D(θ;λ) =

1

2
yT y − λ2

2

∥∥∥θ − y

λ

∥∥∥2

2

}
(2)

where D(θ;λ) is the dual objective. The relationship between the primal and dual

problems is given by y = Xβ̂λ + λθ̂λ.
Next, we let G be the so-called duality gap, defined as

G(β, θ;λ) = P (β;λ)−D(θ;λ) =
1

2
‖y −Xβ‖22 + λ‖β‖1 − λθT y +

λ2

2
θT θ. (3)

In the case of the lasso, strong duality holds, which means that G(β̂λ, θ̂λ;λ) = 0 for
any choice of λ.

Suppose, now, that we have solved the lasso for λ; then for any given λ∗ ≤ λ,
the Gap Safe rule [5] discards the jth predictor if

|XT θλ|j + ‖xj‖2

√
1

λ2
∗
G(βλ, θλ;λ∗) < 1 (4)

where

θλ =
y −Xβλ

max
(
|XT (y −Xβλ)|, λ

)
is a dual-feasible point [5] obtained through dual scaling.

Observe that (4) is a quadratic inequality with respect to λ∗, which means that
it is trivial to discover the boundary points via the quadratic formula:

λ∗ =
−b±

√
b2 − 4ac

2a
where

a =
(
1− |xTj θλ|

)2 − 1

2
θTλ θλ‖xj‖22,

b =
(
θTλ y − ‖βλ‖1

)
‖xj‖22,

c = −1

2
‖y −Xβλ‖22‖xj‖22.
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By restricting ourselves to an index j corresponding to a predictor that is inactive
at λ and recalling that we have λ∗ ≤ λ by construction, we can inspect the signs of
a, b, and c and find a range λ values for which predictor j must be inactive. Using
this idea for the lasso path—a grid of λ values starting from the null (intercept-only)
model, which corresponds to λmax = maxi |xTi y|, and finishing at fraction of this
(see section 3 for specifics)—we can screen predictor j for all upcoming λs, possibly
discarding it for multiple steps on the path rather than just the next step. We call
this idea look-ahead screening.

To illustrate the effectiveness of this screening method, we consider an instance
of employing look-ahead screening for fitting a full lasso path to the leukemia data
set [3]. At the first step of the path, the screening method discards 99.6% of the
predictors for the steps up to and including step 5. The respective figures for steps
10 and 15 are 99.3% and 57%. At step 20, however, the rule does not discard a single
predictor. In Figure 1, we have visualized the screening performance of look-ahead
screening for a random sample of 25 predictors from this data set.
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Figure 1: This figure shows the predictors screened at the first step of the lasso path
via look-ahead screening for a random sample of 20 predictors from the leukemia
data set. A blue square indicates that the corresponding predictor can be discarded
at the respective step.

As is typical for all screening methods, the effectiveness of look-ahead screening
is greatest at the start of the path and diminishes as the strength of penalization
decreases later on in the path. Note, however, that all of the quantities involved in
the rule are available as a by-product of solving the problem at the previous step,
which means that the costs of look-ahead screening are diminutive.

3 Simulations

In this section, we study the effectiveness of the look-ahead screening rules by
comparing them against the active warm start version of the Gap Safe rules [1, 5].
We follow the recommendations in [5] and run the screening procedure every tenth
pass of the solver. Throughout the experiments, we center the response vector by
its mean, as well as center and scale the predictors by their means and uncorrected
sample standard deviations respectively.

To construct the regularization path, we employ the standard settings from
glmnet, using a log-spaced path of 100 λ values from λmax to ελmax, where ε = 10−2
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if p > n and 10−4 otherwise. We also use the default path stopping criteria from
glmnet, that is, stop the path whenever the deviance ratio, 1−dev/devnull, is greater
than or equal to 0.999, the fractional increase in deviance explained is lower than
10−5, or, if p ≥ n, when the number of active predictors exceeds or is equal to n.

To fit the lasso, we use cyclical coordinate descent [2]. We consider the solver to
have converged whenever the duality gap as a fraction of the primal value for the
null model is less than or equal to 10−6 and the amount of infeasibility, which we
define as maxj

(
|xTj (y −Xβλ)| − λ

)
, as a fraction of λmax is lower than or equal to

10−5.
Source code for the experiments, including a container to facilitate reproducibil-

ity, can be found at https://github.com/jolars/LookAheadScreening/. An
HPC cluster node with two Intel Xeon E5-2650 v3 processors (Haswell, 20 com-
pute cores per node) and 64 GB of RAM was used to run the experiments.

We run experiments on a design with n = 100 and p = 50 000, drawing the rows
of X i.i.d. from N (0,Σ) and y from N (Xβ, σ2I) with σ2 = βTΣβ/SNR, where
SNR is the signal-to-noise ratio. We set 5 coefficients, equally spaced throughout
the coefficient vector, to 1 and the rest to zero. Taking inspiration from (author?)
[4], we consider SNR values of 0.1, 1, and 6.

Judging by the results (Figure 2), the addition of look-ahead screening results
in sizable reductions in the solving time of the lasso path, particularly in the high
signal-to-noise context.
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Figure 2: Standard box plots of timings to fit a full lasso path to a simulated data
set with n = 100, p = 50 000, and five true signals.

4 Discussion

In this paper, we have presented look-ahead screening, which is a novel method to
screen predictors for a range of penalization values along the lasso regularization
path using Gap Safe screening. Our results show that this type of screening can
yield considerable improvements in performance for the standard lasso. For other
loss functions, (4) may no longer reduce to a quadratic inequality and will hence

https://github.com/jolars/LookAheadScreening/
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require more computation. Nevertheless, we believe that applying these rules in
these cases is feasible and likely to result in comparable results.

Moreover, the idea is general and can therefore be extended to any type of safe
screening rule and also used in tandem with heuristic screening rules in order to
avoid expensive KKT computations. Finally, although we only cover one type of
cyclical coordinate descent in our experiments, note that our screening method is
agnostic to the solver used and that we expect the results hold for any solver that
benefits from predictor screening.

Acknowledgements: I would like to thank my supervisor, Jonas Wallin, for
valuable feedback on this work. The computations were enabled by resources pro-
vided by the Swedish National Infrastructure for Computing (SNIC) at LUNARC
partially funded by the Swedish Research Council through grant agreement no.
2017-05973.
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Abstract: The last decade has seen the rise of Adversarial Machine Learning
(AML). This discipline studies how to manipulate data to fool inference engines,
and how to protect those systems against such manipulation attacks. Extensive
work on attacks against regression and classification systems is available, while
little attention has been paid to attacks against time series forecasting systems. In
this paper, we propose a decision analysis based attacking strategy that could be
utilized against Bayesian forecasting dynamic models.

Keywords: Bayesian forecasting, Adversarial machine learning, Bayesian model
monitoring.
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1 Introduction

Machine learning (ML) applications have experienced an impressive growth over
the last decade. However, the ever increasing adoption of ML methodologies has
revealed important security issues. Among these, vulnerabilities to adversarial ex-
amples [3], intentionally manipulated data instances targeted at fooling ML algo-
rithms, are especially important. In contexts in which ML systems are susceptible
of being attacked, algorithms should acknowledge the presence of possible adver-
saries and be trained in such a way that they are robust against their potential
data manipulations. This is the main goal of AML. As recently pointed out in [4],
having relevant models of how an adversary might modify input data to a learning
system is key to guarantee protection against adversarial attacks. In the last few
years, several attacking models to classification and regression systems have been
released. However, much less attention has been paid to attacks to time series fore-
casting models. In this paper, we put ourselves in the shoes of an adversary, willing
to manipulate input data to a time series forecasting system in order to drive pre-
dictions to a target of his interest. This is a crucial step prior to developing robust
defence mechanisms.
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2 Attacks against Bayesian forecasting dynamic
models

Previously proposed attacks against time series forecasting models [1] focused on
attacking simple auto-regressive (AR) models. Their idea is straightforward: an ad-
versary is interested in driving the predictions made by an AR model during a fixed
time window towards a target of his interest. To do so, he deliberately modifies the
observations received by the AR system prior to the onset of the time window. The
adversary is assumed to have complete knowledge about the parameters governing
the AR model and the original data that would be fed into the system. In this
case, given a candidate data manipulation, the attacker could compute the vector
of predictions that the model would yield. A data manipulation is then selected to
minimize the distance between the predictions produced and the target predictions,
subject to some constraints about the size of the data manipulation reflecting a
limited budget or the fact that the adversary wants to avoid being detected.

In this paper, our main purpose is to propose attacking strategies that target
Bayesian forecasting dynamic models [6]. Rather than extending previous attacks
to target these models, we build a novel, more realistic, attacking strategy based
on decision analysis ideas. Let us start with the setting. We consider two agents:
a Defender (D, she), which is implementing a Bayesian forecasting dynamic model
to aid her in making some decision, and an attacker (A, he), manipulating the data
that D receives, in order to modify such a decision. As a running example, consider
that D is an ad company monitoring traffic flow into one of its webpages, using a
conditionally Poisson dynamic model [2]. At some point, based on predictions for
the next few days, D must decide whether to place an ad in the monitored node or
not. In turn, A modifies the input data of the model by producing fake connections
to the website in order to induce D to make a wrong decision. For instance, A could
be interested in making D spend resources on placing the ad, when, from a decision
analysis point of view, was not convenient.

To fix ideas, say D is using a Bayesian dynamic model to forecast a quantity yt
of interest. Inferences about this quantity are updated sequentially as new data are
observed, with Dt representing all information available at time t.1 When t = α,
the Defender must make a decision based on her forecasts from time α + 1 until
time β. From a decision analysis perspective, her optimal decision should maximize
her posterior predictive utility

d∗ = arg max
d

Ψ(d|Dα) = arg max
d

∫
u(d, yα+1:β)p(yα+1:β |Dα) dyα+1:β ,

where u(d, yα+1:β) is the utility perceived from making decision d when future data
is yα+1:β and p(yα+1:β |Dα) is the posterior predictive distribution over the next
β − α periods at time α.

Consider now A’s problem. We study the case of a very powerful attacker: A
has knowledge about D’s utility, her probability model, and also the observations
that the defender receives from time 0 until time α. For instance, A could be

1Dt is recursively defined through Dt = Dt−1 ∪ {yt}.
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an insider within D’s company. Assume that A is interested in modifying the
observations to be received by D from time t = α− h until time t = α, so that, D
will update her model with contaminated data ỹα−h, . . . , ỹα rather than with clean

data yα−h, . . . , yα. We denote the attacked data until time α as D̃α. Through these
modified data, A’s goal is to make the Defender decide dA instead of d∗. A main
difference between our approach and previous ones is that earlier work on attacks
to time series forecasting systems considered that the attacker modifies data to
drive the predictions produced by the defender towards a certain target. Instead,
we consider that a more encompassing objective to the attacker is to make the
defender decide something inconvenient.

Clearly, not every data manipulation that induces decision dA is equally inter-
esting for A. He might have limited resources and, more importantly, he would
typically want to avoid being detected. In previous work, this later goal was for-
malized limiting the size of the perturbation ‖ỹα−h:α−yα−h:α‖, under certain norm.
This would yield the following optimization problem to be solved by the attacker
when looking for optimal manipulations

min
ỹα−h:α

‖ỹα−h:α − yα−h:α‖ s.t. Ψ(dA|D̃α) > Ψ(d|D̃α) ∀d. (1)

Resource limitations could be incorporated as additional constraints.
We argue that this way of formalizing the goal of wanting to avoid detection,

could be inconvenient in several scenarios: even slight changes in the data, if they
happen always in the same direction, could induce structural changes in time series
that can be easily detected by an appropriate monitoring strategy. Imagine that D
is indeed monitoring the predictive performance of her Bayesian forecasting model
using the strategy described in [5]. The main idea is to compare, at each time,
the predictive performance of the current model, with that of an alternative model
using the local Bayes factor Ht = p(yt|Dt−1)/pA(yt|Dt−1). A small Ht indicates low
predictive performance at time t, and, thus, yt is considered discrepant. However,
in order to be able to detect not only single discrepant points but also structural
changes, [5] proposes looking for the most discrepant group of recent, consecutive
observations, which entails calculating at each time the minimum cumulative Bayes
factor Vt = min1≤k≤tHtHt−1 . . . Ht−k+1. This can be sequentially computed as
Vt = Ht min[1, Vt−1]. The basic diagnostic mode of operation of D would be to
accept the current model as satisfactory unless Vt falls below some threshold value
γ. This monitoring strategy has been proved to be useful to detect model failures
happening due to outliers or structural changes.

Thus, to avoid detection, data manipulations should not produce significant
decrease in the the minimum of the cumulative Bayes factors. Otherwise, they
could trigger the monitor. We therefore propose looking for attacks, solving the
problem

max
ỹα−h:α

min Ṽα−h:α s.t. Ψ(dA|D̃α) > Ψ(d|D̃α) ∀d, (2)

where Ṽt is the minimum of the cumulative Bayes factors at time t, under attacked
data. We believe that this formalization of the concept of avoiding detection is
more coherent than that in (1), as it modifies data trying to mimic the predictive
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behaviour of the model being used by D, and thus produces tainted data points
that are aligned with D’s beliefs.

Of course, solving problems (1) and (2) exactly is unfeasible, and we must use
heuristic methods to approximate the optimal solution. In the next Section, problem
(2) is approximately solved using simulated annealing. Algorithmic details are not
shown due to lack of space.

3 Case study

Continuing with our running example2, imagine that at time α = 500 the ad com-
pany (D) must decide about placing an ad on the monitored node, that will appear
at a certain time β = 550 in the future, in which the company is interested on. The
cost of placing the ad is C = 100. The reward perceived by the company per user
watching the ad is R = 0.95. Assuming that D is risk neutral, it is straightforward
to see that her posterior predictive utility is R ·E[yβ |Dα]−C if she decides to place
the ad and 0 otherwise. E[yβ |Dα] is the posterior predictive mean for the number

of connections at time β. Thus, D should place the ad if E[yβ |Dα] > C
R . Having a

good estimate of E[yβ |Dα] is crucial to inform D’s decision. To that end, D fits a
conditionally Poisson model with local linear growth in the latent process [2]. To
fit this model, D uses data of previous traffic flow from time 0 until time α = 500.
The blue line in Figure ?? shows the original data and the Monte Carlo estimate of
the predictive mean from t = 500 to t = 550. As can be seen, the predictive mean
of the number of connections at time t = 550 is around 80, far below C/R ' 105.
Thus, the company should decide not to spend resources on placing the ad.
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Figure 1: Attacked and original data, forecast for predictive mean and Vt

Now imagine that A, an insider in the company, has resources to create fake
connections to the monitored node from time t = α − h (with h = 20) until time
t = α. His goal is to make D waste resources in placing the ad (when it is not
recommended as we have seen). He can just create fake connections that will be
added to the normal traffic flow. D uses a monitoring system as described in

2The code to reproduce this experiment is available at https://github.com/roinaveiro/
attacksSSMs

https://github.com/roinaveiro/attacksSSMs
https://github.com/roinaveiro/attacksSSMs
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Section 2. A knows this and, to avoid detection, chooses his attack approximately
solving (2). The red line in Figure 1a shows that, adding few connections from
time t = 480 to t = 500, will produce a flip of D’s optimal strategy, as the tainted
predictive mean at time t = 550 surpasses C/R. In addition, these connections
are added in a very subtle way, and they do not trigger an alarm as can be seen
in Figure 1b. We see that the minimum cumulative Bayes factor for the attacking
period is not substantially different from that under original data.

4 Discussion

We have presented a decision analysis-based approach to generate data manipula-
tion attacks against Bayesian forecasting dynamic models. Our framework has two
central differences with previous approaches: (1) the attacker’s goal is to change the
decision made by the defender, rather than drive the predictions towards an specific
target; (2) the formalization of “subtle” attack is based on cumulative Bayes factors
rather than the size of the manipulations.

Several further directions of research could be explored. First of all, we have as-
sumed an attacker that has full knowledge about the defender. Considering limited
knowledge cases is an interesting way to go. Secondly, we have focused on static at-
tacks: the attacker makes a single data manipulation decision in view of D’s model
and the data that D will be receiving. A more realistic case would be the dynamic
attack: the attacker decides the attack for the next time period, the defender up-
dates the manipulated data point and updates her model, then the attacker decides
the next attack, an so on.

Acknowledgements: I would like to thank SAMSI, AXA, the FBBVA, the
Trustonomy project and professor Mike West for insightful discussions.
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Abstract: The paper is focused on the application of yield curves in the insur-
ance and to regulations of Solvency II (see [2]). Legislative programme Solvency
II requires for a yield curve to be fitted on liquid instruments until the last liq-
uid point, from which the curve is extrapolated to the Ultimate Forward Rate for
a long pre-determined horizon. The forward curve has to converge to the Ulti-
mate Forward Rate with a pre-determined accuracy of one basis point. The aim
is to calibrate Solvency II consistent parametric models and compare them to the
spline-based Smith-Wilson model, which is suggested by the European Insurance
and Occupational Pensions Authority.
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1 Introduction

The primary purpose of yield curves is, based on yields observed in the market, to
interpolate yields that cannot be observed. In insurance, yield curves are crucial
to discount future cash-flows using market-consistent rates. Moreover, as a require-
ment of the European Insurance and Occupational Pensions Authority (EIOPA),
yield curves must comply with the Solvency II framework. Forward curves must
converge at the pre-determined horizon to Ultimate Forward Rate (UFR).

EIOPA suggests using the spline-based Smith-Wilson model. On the one hand,
the model is easy to calibrate, and the optimization which is necessary for the
regulatory requirements is time-efficient and straightforward. The reason is that the
UFR is the model’s parameter, and we only need to adjust the speed of convergence.
On the other hand, the model could perform worse in terms of accuracy of out-of-
sample yields compared to other models.

Natural counterparts to the Smith-Wilson model are parametric models such as
Nelson-Siegel, Svensson model or the extension of the Svensson model, Five-factor
model. These parametric models can be viewed as non-linear regression models,
where the convergence to the UFR is highly uncertain. The key question of this
paper is whether it is possible to calibrate UFR consistent parametric yield curves.
Additionally, the aim is to compare the Smith-Wilson model with parametric models
since the Smith-Wilson model has a perfect fit for the known yields. Still, it does
not mean that it does not have greater error for yields of unobserved maturities.

∗Corresponding author: matus.padysak@fmph.uniba.sk
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2 Models

Since the parametric models are the main focus of the paper, for the Smith-Wilson
model, we refer to the Technical documentation of EIOPA (see [2]).

Definition 1. Let us define by z the time to maturity of zero-coupon bond mea-
sured in months. We define the general parametric (spot) yield function at time t
as:

yt(z) = β0t + β1t

(1− exp(− z
λ1t

)
z
λ1t

)
+ β2t

(1− exp(− z
λ1t

)
z
λ1t

− exp(− z
λ1t

)
)

+

+β3t

(1− exp(− z
λ2t

)
z
λ2t

− exp(− z
λ2t

)
)

+ β4t

(1− exp(− z
λ2t

)
z
λ2t

)
,

and the general instantaneous parametric forward yield function as:

ft(z) = β0t + β1texp(− z
λ1t

) + β2t
z
λ1t
exp(− z

λ1t
) + β3t

z
λ2t
exp(− z

λ2t
) + β4texp(− z

λ2t
).

If β3t = β4t = 0, the general model is labelled as the Nelson-Siegel model. If
β4t = 0 and λ1t 6= λ2t, the general model is labelled as the Svensson model. Lastly,
if λ1t 6= λ2t, the general model is labeled as the Five-Factor model.

3 Calibration

Market consistent curves

In general, the aim is to find model parameters based on the observed bond yields
such that the difference between fitted and observed yields would be minimal. In
other words, to find the optimal parameters based on a given objective function
that measures the error between observed and fitted yields. Throughout the paper,
we use the mean-squared error as the objective function:

MSEt =
∑N
n=1(yt,n − ŷt,n)2,

where N is the number of observed bonds.
One strand of the literature suggests a linearization by fixing the λ parameters

to a constant [1]. However, the parameter is not time-dependent which could be
detrimental for the long-term accuracy.

We suggest finding the optimal time-dependent λ parameters iteratively (for
example, for the Svensson model on a grid). At time t, we fix λ parameters and
find estimates using OLS. For each iteration, we compute the MSE and find λ
parameters such that the MSE is minimal.

Therefore, we define a set Ω = {(λ1t, λ2t);λ1t ∈ T1, λ2t ∈ T2}, where T1 =

{a1 + bc}d1c=0 and T2 = {a2 + bc}d2c=0, a1, a2, b, d1 and d2 are appropriate constants.
The estimated λ coefficients are equal to the:

(λ̂1t, λ̂2t) = arg max(λ1t,λ2t)∈ΩMSEt.
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Another strand of the literature considers calibration as a non-linear optimiza-
tion problem. [3] compared direct-search (Nelder-Mead, Powell), stochastic (Simu-
lated annealing) and gradient-based algorithms. Unsurprisingly, given the numerous
local optima of yield curves, direct-search and stochastic algorithms performed with
significantly lower errors.

Throughout the paper, we opt for the direct search Nelder-Mead algorithm
(NM), linearization (LM) and Differential Evolution (DE) algorithm (see Table 1).
The latter could be potentially superior to Simulated annealing since it utilizes a
whole population of possible solutions, and apart from the stochastic element that
allows jumping out of local optima, the algorithm also utilizes mutation, recombi-
nation and selection.

UFR consistent curves

Firstly, the curves must be fitted based on yields with maturity up to the last
liquid point. The last liquid point (LLP) depends on the currency, while for pound
sterling, the last liquid point is equal to 50 years, for Polish zloty, the point is 10
years. For the eurozone, the LLP is 20 years. Additionally, the forward curve has
to converge to the Ultimate Forward Rate for a maximum of 20+LLP and 60 years
with accuracy of one basis point (0.01%). Each year the UFR is published by the
EIOPA and it is a sum of the expected inflation and real interest rate. Each year,
the UFR can change by the maximum of 15 basis points (see [2]). To sum it up,
forward curves have to be extrapolated from the last liquid point to the UFR and
have to converge with a pre-defined accuracy.

In practice, this is problematic for parametric models since parametric models
do not have UFR as a model parameter to which they converge to. For z → ∞
they converge to β0. However, even if we would fix β0 to UFR, the maturity of
the maximum of 20 + LLP and 60 years might not be long enough. Our proposed
heuristic could solve these problems:

1. Calibration of spot yield curve based on observed bond yields.

2. Calculation of fitted forward rates for the observed maturities using estimated
parameters from the first step.

3. Addition of the UFR rate as observed forward rate for the maturity of
max(20 + LLP, 60) years.

4. Calibration of the forward yield curve where the observed forward rates are
the fitted rates for known maturities and UFR rate. From this point, any calibration
method mentioned above could be used, where instead of spot yields, forward yields
are used.

5. As the final step, we need to check whether the fitted UFR rate does not
differ from the published rate by more than 1 basis point. If it does, β0 is modified
so that the condition holds true - the curve is shifted up or down to satisfy the
condition. The final parameters can be used to calculate fitted spot or forward
rates.
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4 Testing

Traditionally, yield curves are compared based on average errors (e.g. MSE or
RMSE). Residuals of parametric models do not tend to be normally distributed,
and for each curve, there are only a few observations. Moreover, these metrics
make it impossible to compare parametric models with the Smith-Wilson model
since it has a perfect fit for maturities of observed yields.

For Solvency II consistent curves, we propose the leave-k-out approach where
we randomly drop some observed yields from the sample and calibrate the curves.
This allows for the evaluation of the curves out-of-sample since we can compare the
fitted yields for dropped maturities with real observed yields. Additionally, we can
measure the errors using MSE and using a long history of curves, we can test the
differences (mean or median value) across models with statistical tests.

Method Average MSE Standard deviation
NM 0.0808344 0.06223664
LM 0.06005777 0.04971987
DE 0.0765261 0.05414692

Table 1: Comparison of optimization methods for Five-Factor model, France
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Figure 1: Tenfold leave-2-out validation, France, DE optimization for parametric
models

5 Results and Discussion

Data includes sixteen monthly observations of zero-coupon government bonds of
France for maturities ranging from one month to approximately 20 years. Dataset
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spans from 31.9.2009 to 31.8.2018 and is merged from Thomson Reuters Eikon and
Investing.com. A subset of this dataset is also used for the Solvency II consistent
curves. This set consists of monthly observation for years 2017-2019 (given by the
availability of published UFRs; 2017: 4.2%, 2018: 4.05%, 2019: 3.9%).

Lastly, we provide results for the comparison of parametric (Svensson, Five-
factor) and Smith-Wilson models (see Fig. 1). We repeat the leave-2-out approach
ten times during the whole UFR sample to obtain mean-squared errors for each
month in the sample. Based on the Sign test (non-symmetrical distribution) and 5%
significance level, these differences are significant in eight cases for Smith-Wilson and
Five-factor comparison. For both Five-Factor and Smith-Wilson models compared
to the Svensson model, differences are significant in all cases. Lastly, we cannot
conclude that the Five-factor model is superior to the Smith-Wilson model for
every timeframe or country. Perhaps, the decision which model to use should be
individual for each country and market situation.
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Abstract: This paper models debugging and testing costs for a software product
using geometric process (GP) model. Since these costs are based on the mean value
and second moment functions of a GP model, it is necessary to compute these
functions to calculate the costs. However, the computation procedure depends on
both distributional assumption of the first interarrival time of the GP and the
estimations of the model and distribution parameters. In this study, we consider
the software system failure data which agrees with a GP model. Since it has been
shown in previous studies that this data set can be modeled by a particular GP
with gamma distribution, the model and distribution parameters are estimated
under this distributional assumption. Then, the mean value and second moment
functions of the GP model are calculated with the help of these estimators. Finally,
by using the values of mean value and second moment functions, the cost functions
are obtained for the data set.

Keywords: Geometric process, geometric function, second moment function, cost
function, software reliability
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1 Introduction

The GP is a stochastic monotone model which is widely used in various fields of
statistics and applied probability since its introduction. Many researchers and au-
thors made a significance effort on GP by publishing a considerable amount of
research papers. For example, the GP is used as a model in reliability analysis,
maintenance, warranty analysis, electricity prices and epidemic disease. This pro-
cess has following definition.

Definition 1. Let {N(t), t ≥ 0} be a counting process (CP) and Xk be the inter-
arrival time between (k − 1)th and kth event of this process for k = 1, 2, . . . . The
CP {N(t), t ≥ 0} is said to be a GP with the ratio a if there exists a real number
a > 0 such that ak−1Xk for k = 1, 2, . . . generate a renewal process (RP) with a
common distribution function F1 where F1 is the distribution function of the first
interarrival time X1.

∗Corresponding author: mustafa.hilmi.pekalp@ankara.edu.tr
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The GP is also called quasi-renewal process with ratio parameter α = 1/a by
[4].

Consider a GP model {N(t), t ≥ 0} with the ratio parameter a and let Fk be
the distribution function of Xk, k = 1, 2, . . . . It is clear from the definition of the
GP that Fk can be uniquely determined by the distribution function of the first
interarrival time X1 of a GP, that is, Fk(x) = F1(ak−1x) for k = 1, 2, . . . . The
sequence {Xk, k = 1, 2, . . . } is stochastically increasing if a < 1 and stochastically
decreasing if a > 1, respectively. If a = 1, then the GP reduces to a RP.

Let {N(t), t ≥ 0} be a GP with ratio parameter a and let ∗ denote the Stieltjes
convolution. The mean value function of a GP, which is also called the geometric
function, is given by

M1(t) = E(N(t)) =

∞∑
k=0

F1 ∗ F2 ∗ . . . ∗ Fk(t), t ≥ 0. (1)

M1(t) satisfies the following integral equation [12].

M1(t) = F1(t) +

∫ t

0

M1(a(t− x))dF1(x), t ≥ 0. (2)

The second moment function of a GP is given by

M2(t) = E(N2(t)) = 2

∞∑
k=0

k(F1 ∗ . . . ∗ Fk(t))−
∞∑
k=0

F1 ∗ . . . ∗ Fk(t), t ≥ 0. (3)

[9] showed that M2(t) satisfies the following integral equation.

M2(t) = 2M1(t)− F1(t) +

∫ t

0

M2(a(t− x))dF1(x), t ≥ 0. (4)

For a ≤ 1, M1(t) and M2(t) are finite for all t ≥ 0. Further, if F1 is continuous,
then the integral equations (2) and (4) can be solved uniquely although M1(t) and
M2(t) cannot be obtained in closed forms. If a > 1,M1(t) and M2(t) are infinite
for all t ≥ 0. The proof of these results can be found, for example, in [12].

It can be easily seen from the definition of the functions M1(t) and M2(t) that
the analytical forms of these functions do not exist. In the literature, many authors
make a significant effort on the computations of these functions. Known studies on
the functions M1(t) and M2(t) of the GP can be given as follows: [2], [3], [8]-[10]
and [13].

Let {N(t), t ≥ 0} be a GP with the ratio parameter a and assume that E(X1) =
µ and V ar(X1) = σ2. Thus, it can be obtained that E(Xk) = µ/a(k−1) and
V ar(Xk) = σ2/a(2(k−1)), k = 1, 2, . . . . Obviously, the parameters a, µ and σ2 are
the very crucial in the context of GP since these parameters completely determine
the mean and variance of Xk. The estimation problem of these parameters is
extensively studied in the literature. see [1], [6], [11]. In all studies cited, authors
propose maximum likelihood (ML) estimators for the distribution considered. For
this reason, in this study, we consider only ML estimators for the model parameters
of the GP.
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As one can easily notice from the studies above, the computation and, further,
estimation procedures depend on distributional assumption of the first interarrival
time. For this reason, it is an important problem to discriminate the distribution
of the first interarrival time in GP model. It is well known that gamma, lognormal
or Weibull distributions can be used quite effectively to analyze the data from a
series of events. [7] deal with the problem of selecting one of these distributions
for a given data set which is consistent with the GP model according to T-statistic
based on the ratio of the maximized likelihood (RML). [7] conclude that T-statistic
based on RML performs better than Kolmogorov-Simirnov, mean square error and
maximum percentage error criteria according to their extensive simulation study.
After validating the distribution for the data set which is consistent with the GP
model, [7], further, calculate the estimates of the parameters by using the suitable
method given in [6] for gamma, [1] for Weibull or [11] for lognormal.

2 Problem Description

The software testing is a powerful tool to remove bugs (faults) from the software
products. However, an extensive testing procedure in a large program may not
be reasonable. Debugging and testing decrease the error contents but this also
increases the improvement costs. Actually, after reaching a certain level of software
refinement, more studies on increasing reliability will cause much increase in cost
and debugging time. Thus, it is essential to determine when to stop testing or when
to release the product [4]. [4] propose a GP {N(t), t ≥ 0} to model the detection
of software bugs where N(t) denotes the number of software bugs in the interval
(0, t] for each fixed t ≥ 0. In this model, suppose that the cost of fixing the ith
software bug is a random variable, Wi, and we consider two parts for this random
variable, a deterministic part c0 and an incremental random part (i− 1)U , that is,
Wi = c0 + (i− 1)U, i = 1, 2, . . . where c0 is a constant and U is a random variable
with mean c1. It is worth to note that this assumption is plausible because the fixing
cost of a software bug is increasing as the number of bugs removed is increasing.
Then, it is obvious that the expected total debugging cost in the interval (0, t] is

E(
∑N(t)
i=1 (c0 + (i − 1)U). By conditioning on N(t), this cost function is obtained

depending on the functions M1(t) and M2(t) as

C1(t) =
(2c0 − c1)

2
M1(t) +

c1
2
M2(t), t ≥ 0. (5)

Further, if we assume that the cost of testing per unit time is a random variable with
mean c2, then the expected testing cost up to time t is tc2 and if we consider this
cost in the above cost model, we obtain the total expected testing and debugging
cost up to time t.

C2(t) = tc2 + C1(t), t ≥ 0. (6)

To compute the cost functions C1(t) and C2(t), it is clear that we need to
calculate the first and second moments of the number of software bugs up to time t,
i.e., M1(t) and M2(t). Furthermore, the values of M1(t) and M2(t) can be obtained
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by determining the distribution of the first interarrival time of the GP model. The
calculation procedure will be explained in the next section.

3 Calculation Procedure

Assume that the data set {X1, X2, . . . , Xn} comes from a GP with ratio parameter
a. To calculate the cost functions C1(t) and C2(t), we will apply the following steps:
Step 1. Calculate the estimators of the ratio parameter a and distribution parame-
ters for each distribution considered, see [6] for gamma, [1] for Weibull and [11] for
lognormal. Step 2. Compute their likelihood functions and use T-statistic based on
RML to discriminate the distributions, see [7]. Step 3. Obtain the estimates of the
model parameters associated with the validated distribution of the first interarrival
time of the GP model. Step 4. Calculate the functions M1(t) and M2(t) with one
of the suitable computation methods mentioned in the first section. Step 5. For a
given t, c0, c1 and c2, calculate the cost functions C1(t) and C2(t).

4 Real Data Application

Let us consider the software system failure data given in [5]. This data contains 136
failure times (in CPU seconds, measured in terms of execution time) of a real time
command and control software system. As this data set contains three cases that
the consecutive failure times are identical, interarrival times of these consecutive
failure times are adjusted from 0 to 0.5. [12] prove that the data is consistent
with a GP model. Moreover, [12] also show that the ratio parameter a of this GP
model is less than 1. When we consider the results given in [7] for this data set, it
can be concluded that the data set {X1, X2, . . . , Xn} comes from a particular GP
with gamma distribution with shape parameter α and scale parameter β. The ML

estimates of the model parameters are â = 0.9771, α̂ = 0.7604 and β̂ = 123.7110.
According to the calculation procedure proposed by [13] and [9], M1(t) and M2(t)
can be calculated iteratively by using the trapezoidal integration rule. When we
apply this method, we calculate that M1(t) = 0.3005 and M2(t) = 0.4068 for t = 20.
For a given c0 = 13.5, c1 = 1 and c2 = 1.2, the cost functions can be computed as
C1(t) = 4.1099 and C2(t) = 28.1099, respectively.
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[9] M.H. Pekalp, H. Aydoğdu. An Integral Equation for the Second Moment Func-
tion of a Geometric Process and Its Numerical Solution. Naval Research Logis-
tics, 65(2):176-184, 2018.
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Abstract: Many problems in nature are modeled via a system of (partial) differ-
ential equations. For example the growth of a population, the spread of a virus, the
evolution of weather, the heat distribution in a certain body, the flow of a fluid in
a certain environment, models of dynamical systems, the evolution of the price of
financial instruments and many other. Let’s summarize this as a system of the form
X ′t = f(α,X) where α is a set of parameters our model depends on. This equation
can be also interpreted as a stochastic differential equation, but for the moment we
will only consider the deterministic version of it.

In this framework there are two problems we want to treat. One is the deter-
mination of the parameters from a limited number of observations of the system
at some given times. The other is the forecast on the system beyond the already
observed data and eventually also prediction on what happened at intermediate
times between the observations.
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1 Introduction

In the fight with the COVID-19, quarantine was one of the main measures, at least
when the hospitals were overwhelmed with patients and the virus propagation and
its inside body working was not well understood.

A basic tool in analyzing the spread of the virus is the mathematical modeling.
There is a growing body of mathematical models used at the moment as for a
small sample by no means exhaustive see [1], [2], [3], [4], [5]. This turned out to
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be a valuable tool that can be used in the assessment, prediction and control of
infectious diseases, as it is the COVID-19 pandemic, which significantly impacted
almost all countries, with important social and economical implications worldwide.
The main purpose of this work is to develop a predictive model that can accurately
assess the transmission dynamic of COVID-19.

In this paper we propose a regime separation for the analysis of Covid19 on
Romania combined with mathematical models of SIR and SIRD. The main regimes
we study are the free spread of the virus, the quarantine and partial relaxation
and the last one is the relaxation regime. The main model we use is SIR which
is a classical model, but because we can not fully trust the numbers of infected or
recovered people we base our analysis on the number of deceased people which is
more reliable. To actually deal with this we introduce a simple modification of the
SIR model to account for the deceased separately. This in turn will be our base
for fitting the parameters. We actually use the classical SIR model to detect the
regime switching and in fact prove a proposition which shows that we can recover
the parameters in a unique way from the daily observation of the number of infected
and susceptible. This is the basis for guessing the main parameters in the model.

The actual estimation of the parameters in our SIRD model is done in two steps.
The first one consists in training a neural network based on SIR models to detect
the regime changes. Once this is done, we fit the main parameters of the SIRD
model using a grid search near the values suggested by the neural network. At the
end, we make some predictions on what the evolution will be in a timeframe of a
month with the fitted parameters.

2 SIR Model, neural network and the parameters
regime

We analyze the following SIR model: at time t, we consider S̄(t) as the number of
susceptible individuals, Ī(t) as the number of infected individuals, and R̄(t) as the
number of removed/recovered individuals. The equations of the SIR model are the
following:


dS̄
dt = − β̄S̄ĪN
dĪ
dt = β̄S̄Ī

N − γĪ
dR̄
dt = γĪ

(1)

Because there is no canonical choice of N , we will transform the system (1) by
dividing it by N and considering S(t) = S̄(t)/N , I(t) = Ī/N and R(t) = R̄(t)/N .
It is customary to choose N = 106 for convenience but this is just an arbitrary
choice. For instance, analysis on smaller communities, or cities involves less than
106, however 106 is a common choice because countries number their populations
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in multiples of 106. With these notations we translate (1) into
dS
dt = −βSI
dI
dt = −βSI − γI
dR
dt = γI

(2)

where β = β̄/N and γ is the same as in (1).
Notice that now we actually have that S(t) + I(t) +R(t) = S0 + I0 +R0 = 1 for

all t ≥ 0. Since we are interested in the reverse problem, namely determining the
parameters β, γ from the observations, we put this as a formal mathematical result
as follows.

Proposition 1. Referring to the system (2), if we know I0, S0 and the values
I(t1), S(t1) for some t1 > 0, these determine uniquely the parameters β and γ of
the system.

Notice there the main assumption, that the parameters β, γ do not change in
time.

Our next goal is to get estimates on the parameters β, γ of the SIR model. There
are two basic ideas here. The first one is to train a neural network using a typical
inverse problem. The second one is to use this neural network combined with the
data to estimate the regimes of the parameters. In a real world the parameters
do not stay constant, they change slightly and we would like to catch part of this
behavior. We combine the neural network with this day by day estimate to get an
indication of the regimes for β and γ. In fact, what we do is we try to detect the
regimes where the parameters stay more or less constant. As we will see the regime
change is confirmed by the quarantine imposed as a fighting measure against the
virus.

The neural network

To deal with the parameter estimates, we do the following. First we discretize β by
considering 200 points equally spaced in the interval [0.1; 1.5] and for γ we consider
100 points equally spaced in the interval [0.05; 0.67]. These intervals were chosen
based on apriori analysis and much experimentation. Next, we solve the system
of differential equations for each pair (βi, γj), for 50 days, for a population of 106

individuals, and we store the results in a dataset.
We train a neural network on the resulting dataset so that the input is of the

form:
XTrain = (Day, #Susceptible, #Infected, #Recovered)

or in the terminology of the previous paragraph, we have

XTrain = (t, S(t), I(t), R(t)) where t = 0, 1, . . . , 50.

and the output is exactly the pair

Y Train = (β, γ),
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which generated the solution above. We fixed the initial conditions S0 = 1 − I0,
I0 = 2/N and R0 = 0. We started with 2 infected people because there were two
initial individuals who traveled in outside the country in exposed regions and were
first spotted as the original spreaders.

The day by day fit of the parameters

Before we move on with the results of the day by day estimates, we point out that
the result of Proposition 1 guarantees that the parameters estimated should be
well-determined by the network as each triple (t, S(t), I(t)) determines in a unique
way the parameters (β, γ).

Once the model had been trained, we use it to predict the day by day β and γ for
Romania Covid-19 reported numbers. What this means is that we try to predict
a set of parameters such that for a given day t, what we observe is exactly the
number of suspected, infected and recovered reported on that day by the officials.
Therefore, we assume and try to predict a single set of parameters for the time
period [0, t], t here being the corresponding day. The results are represented in the
chart below.

Figure 1: The prediction of day by day neural network trained on SIR models.

What this suggests is that we can identify three regimes. The first one is char-
acterized by uncertainty, with a high infection spread and big variation of the two
parameters values from day to day. This is approximately for the first 15 days or
so. This may be due to the fact that, even if there were not many cases reported
yet and the restrictions have not already been imposed, people were starting to be
aware of the severity of the situation. On the other hand, the last 25 days have a
lower volatility for both parameters, which can be a consequence of the measures
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taken by the authorities. The intermediate regime can be considered a transition
between the first one and the last one. This is roughly centered on the 30th day
with a period of ±10 days of regime switching.

We should also comment on the fact that the data that is available shows the
number of individuals that have been tested positive, but it is very likely that the
real number of people infected is in fact much higher, as there are also asymptomatic
individuals, people that are not being tested although they present the specific
symptoms, so they are not part of the official reports. Another aspect that should
be taken into consideration is that the long incubation period characteristic to this
virus determines a delay between the moment when a person has been infected and
the moment when that person has been tested positive.

3 Conclusions

Now we summarize what we did here. The main idea is that within the models we
used we split the problem according to various regimes. In this paper we take three
regimes. One is the regime before any measures were taken. The second regime is
the one in which the quarantine was imposed on the population. We also model
the transition from one regime to another. The third regime we consider is the one
following the relaxation. The transition is also modeled with the help of logistic
function.

The fit is done using the number of deaths. The search of the parameters is
done around the values of β provided by the neural network constructed based on
the simpler SIR model.

We believe that this methodology is a general one and can be extended to
any country provided that we have data, in particular some information about
the regime switch for each of the regimes.

As a disclaimer, there are several assumptions made here. One of them is that
people build up immunity to this virus and the reinfections are negligible.
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1 Introduction

It is well known that a solution to the Cauchy problem for the heat equation

∂u

∂t
=

1

2

∂2u

∂x2
+ V (x)u, u(0, x) = ϕ(x)

can be represented as the expectation of a functional of a Wiener process. Namely,

u(t, x) = Eϕ(x− w(t)) exp
( t∫

0

V (x− w(s))ds
)
, (1)

where w(t) is a standard Wiener process. The formula (1) is called the Feynman-
Kac formula (see [9], p. 308).

If a differential operator in an evolution equation is of order 2m > 2 and has the
form

∂u

∂t
=

(−1)m+1

(2m)!

∂2mu

∂x2m
+ V (x)u, (2)

then any representation of the Cauchy problem solution analogous to (1) with w(t)
replaced by some random process is impossible, since the fundamental solution of (2)
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is not a probability measure. However, some analogous representations were found
in papers ([1], [2], [5], [6], [7]). There are two main approaches to constructing an
analogue of formula (1). One of them is based on using a pseudo-process instead of
the Wiener process. The other one is based on the use of complex-valued process.

Finally, in [3], a probabilistic method was proposed for constructing an approx-
imation of the Cauchy problem solution for the Schrödinger equation with a real
bounded potential by mean values of functionals of stochastic processes. The ap-
proximating operators took the form of the expectations of functionals of a certain
random point field. Using ideas and methods of [3], we are constructing an approx-
imation of the Cauchy problem solution for the evolution equation (2).

A probabilistic approximation of the solution in the case V = 0 was constructed
in [8]. The methods used in [8] were different for m = 2k+1 and m = 2k. In the first
case only real-valued processes were used, while in the second case, complex-valued
processes were used. In this paper we also have two different cases.

2 The case m = 2k + 1

Let ν(dt, dx) be a Poisson random measure on (0,∞)×(0,∞) with intensity measure
dt dx
x1+2m . For ε > 0 we denote a random process

ξε(t) =

t∫
0

eε∫
ε

x ν(ds, dx), (3)

where e is the base of the natural logarithm. Note that for each ε > 0 the process
ξε(t) is a compound Poisson process.

For any positive ε > 0 and t > 0 we define an operator Rtε : L2(R)→ L2(R), by
setting for ϕ ∈ L2(R)

Rtεϕ(y) = ϕ ∗ ωtε(−y) =
1

2π

∫
R

eipy ϕ̂(p) ω̂tε(p) dp,

where ωtε(x) is defined by its Fourier transform

ω̂tε(p) = exp
(
− t
∫ eε

ε

(
ipy +

(ipy)2

2!
+ . . .+

(ipy)2m−1

(2m− 1)!

) dy

y1+2m

)
.

Throughout the paper, Ta denotes the shift operator: Taϕ(x) = ϕ(x+ a).
Next, we construct an analogue of the Feynman-Kac formula for the operator

Aε + V , where Aε is a pseudo-differential operator with symbol

gε(p) =

∫ eε

ε

(
eipy − 1− . . .− (ipy)2m−1

(2m− 1)!

) dy

y1+2m
.

It is easy to check that the symbol gε(p) approximates the function − p2m

(2m)! as ε→ 0.

It means that the operator Aε approximates the operator 1
(2m)!

d2m

dx2m as ε → 0. In
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this case the analogue of the Feynman-Kac formula cannot be written in terms of
elementary functions, therefore it is defined through an integral representation, as
was done in [3]. For this we should build a functional from the trajectory of the
process under the sign of expectation. This functional is constructed as an integral
over the positive semi-axis with respect to a Poisson random measure with Lebesgue
intensity.

Let us denote U(x) = V (x) + 1 and define a family of operators

Nk(τ1, τ2, . . . , τk+1, y1, . . . , yk+1), k = 0, 1, . . . ,

by setting[
Nk(τ1, τ2, . . . , τk+1, y1, . . . , yk+1)ϕ

]
(x)

= Rτ1ε,y1T
y1
x U(y1)Rτ2ε,y2T

y2
y1 U(y2) . . . T yk−1

yk
U(yk)Rτk+1

ε,yk+1
T yk+1
yk

ϕ(yk+1).

Let X = X (R+) be the space of configurations on R+. Each point X of the
space X is a strictly increasing locally finite sequence of positive numbers 0 < t1 <
. . . < tn < . . .. Further, let P0 be a Poisson measure on X whose intensity measure
is the Lebesgue measure (see [4]).

Let γ(·) be a locally bounded measurable function on [0,∞). For every s, t, such
that 0 6 s 6 t, we define an operator Hs,t(γ,X), acting on a function ϕ as[

Hs,t(γ,X)ϕ
]
(x) =

[
Nk
(
tl+1 − s, tl+2 − tl+1, . . . , tl+k − tl+k−1, t− tl+k,

m(s, tl+1),m(tl+1, tl+2), . . . ,m(tl+k−1, tl+k),m(tl+k, t)
)
ϕ
]
(x), (4)

where m(t, s) = γ(s)− γ(t), l = card
(
X ∩ (0, s)

)
, k = card

(
X ∩ (s, t)

)
.

Now, we define a new family of operators Φs,t(γ), depending on γ and ε by
setting

Φs,t(γ) =

∫
X

P0(dX)Hs,t(γ,X) =

∫
X∩[s,t]

P0(dX)Hs,t(γ,X).

Next, we define a semigroup Qtε setting[
Qtε ϕ

]
(x) = E

[
Φ0,t

(
ξε(t)

)
ϕ
]
(x) (5)

for ϕ ∈ L2(R) and a semigroup Qt setting

Qt = exp
(
t
( (−1)m+1

(2m)!

d2m

dx2m
+ V

))
.

By definition, the operator Qt takes the initial function ϕ into a solution of the
Cauchy problem for the evolution equation (2). We additionally assume that the
potential V has 2m+ 1 bounded derivatives and set

L = max(‖V ‖∞, ‖V (1)‖∞, . . . , ‖V (2m+1)‖∞).
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Theorem 1. Let V ∈ C(2m+1)(R). Then there exists a positive constant C such
that for every ϕ ∈W 2m+1

2 (R) and t > 0

‖Qtεϕ−Qtϕ‖L2
6 Cε t et‖V ‖∞

(
1 +

t2m+1L2m+1

2m+ 2

)
‖ϕ‖W 2m+1

2
.

3 The case m = 2k

In this case we use complex-valued processes σξε(t) where σ is a complex constant
and ξε(t) is defined by (3). Take two complex numbers σ+ = exp( iπ2m ) and σ− =

exp(− iπ
2m ). Let us represent the initial function ϕ as

ϕ(x) = P+ϕ(x) + P−ϕ(x) = ϕ+(x) + ϕ−(x),

where P+, P− are Riesz projectors, defined on L2(R) ∩ L1(R) by

P+ϕ(x) =
1

2π

0∫
−∞

e−ipx ϕ̂(p) dp, P−ϕ(x) =
1

2π

∞∫
0

e−ipx ϕ̂(p) dp.

For any positive ε > 0 and t > 0 we define an operator Rtε : L2(R)→ L2(R), by
setting for ϕ ∈ L2(R)

Rtεϕ(y) = ϕ ∗ ωtε(−y) =
1

2π

∫
R

eipy ϕ̂(p) ω̂tε(p) dp,

where ωtε(x) is defined by its Fourier transform

ω̂tε(p) =


exp

(
− t

eε∫
ε

( 2m−1∑
j=1

(ipσ+y)j

j!

)
dy

y2m+1

)
, p > 0,

exp
(
− t

eε∫
ε

( 2m−1∑
j=1

(ipσ−y)j

j!

)
dy

y2m+1

)
, p < 0.

Let S be an operator acting on a function ϕ ∈ L2(R) as

Sϕ(x) =
1

2π

0∫
−∞

eipσ−x ϕ̂(p) dp+
1

2π

∞∫
0

eipσ+x ϕ̂(p) dp = ϕ+(−σ−x) + ϕ−(−σ+x).

As before, we define an operatorHs,t(γ,X) by (4) using a new family of operators

Ñk instead of Nk, where[
Ñk(τ1, τ2, . . . , τk+1, y1, . . . , yk+1)ϕ

]
(x)

= Rτ1ε,y1T
y1
x Sy1U(y1)Rτ2ε,y2T

y2
y1 Sy2U(y2) . . . Rτk+1

ε,yk+1
T yk+1
yk

Syk+1
ϕ(yk+1).

Then we define a semigroup Qtε by (5). The following statement holds.
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Theorem 2. Let V ∈ C(2m+1)(R). Then there exists a positive constant C such
that for every ϕ ∈W 2m+1

2 (R) and t > 0

‖Qtεϕ−Qtϕ‖L2
6 Cε t et‖V ‖∞

(
1 +

t2m+1L2m+1

2m+ 2

)
‖ϕ‖W 2m+1

2
.

The main result of the present paper follows from theorems 1, 2 and the Ba-
nach–Steinhaus theorem.

Theorem 3. Let V be a bounded real potential. Then for any function ϕ ∈ L2(R)

lim
ε→0
‖Qtεϕ−Qtϕ‖L2

= 0.
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Abstract: This paper studies a stochastic model of a limit order book in discrete
time and space, driven by a simple symmetric random walk. Especially, the focus
is on the key quantity, namely the avalanche length, which is defined as a period of
a sequence of trade executions, such that there is no period longer than ε without
trading.
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1 Introduction

The limit order book

The main object of this research, namely the Limit Order Book (LOB), records all
limit orders, both the orders awaiting to be sold (placed on the ask side) and orders
awaiting to be bought (placed on the bid side), see Figure 1. The LOB is defined
on a discrete price grid such that each point of the price grid represents a price
level. For each available price, the corresponding volume is defined as the number
of orders awaiting execution at that price. The best ask price is the price of the
lowest limit sell order, and the best bid price is the price of the highest limit buy
order. The quoted spread is the gap between the best bid and the best ask price,
and it is always positive. The mid-price is defined as the arithmetic average of the
best bid and best ask price.

The model

We are given a probability space (Ω,F , P ). Let us define X and Y as the following
two independent processes: the ‘driver’ process X = (Xn)n≥0 which denotes the
simple symmetric random walk, and the ‘order times’ process Y = (Yn)n≥0, where
Yn models the time of the n-th jump of the simple symmetric random walk. Note
that the process Y = (Yn)n≥0 takes values in Z+ and it is defined as Y0 = 0
and Yn =

∑n
i=1 ∆Yi, such that the increments ∆Yn = Yn − Yn−1 are randomly

distributed for every n.

∗Corresponding author: gagaradojicic@gmail.com
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Figure 1: Snapshot of the NASDAQ limit order book for AAPL stock symbol for 3
levels at 10:02:36am (on the 1st December 2016).

Furthermore, define the order compound price process S = (Sn)n≥0, which
models the mid price at time n ≥ 0, as S0 = 0 and Sn = XAn−1, where A = (An)n≥0

is the time-inverse process of Y = (Yn)n≥0, i.e.

An = inf {k ≥ 0 : Yk > n}.

Let the two-parameter {V (n,U), n ∈ N0, U ∈ Z} be the order volume process,
where V (n,U) denotes the number of orders awaiting execution at price level U at
time n. The order execution occurs when the mid-price reaches the price level at
which there is some volume.

Since we ignore the size of the order, we distinguish only two cases: if there is an
order at moment n at price level U , indicated by V (n,U) > 0 or if at that moment
n there is no order at that price level, i.e. V (n,U) = 0. We assume that at the
start point the LOB is full., i.e. for u ∈ Z:

V (0, u) = 1u≥0.

From now on, we focus on the ask-side, since similarly all the calculations can
be derived for the bid-side. We fix an integer order placement parameter µ ≥ 1 and
introduce the order book dynamics with the following equation:

V (Yn+1, U) = 1{U 6=Sn}[V (Yn, U) + 1{U=Sn+µ}].

This equation can be interpreted as follows: if U = Sn at time Yn and there is at
least one order at that price level, indicated by V (Yn, U) > 0, then the trade event
occurs and all orders at that price level are removed from the LOB, the new value
is consequently V (Yn+1, U) = 0. Furthermore, we assume that on the ask side at
each step of the random walk a new order will be placed at the distance µ above
the price Sn. Similarly, on the bid side a new order will be placed at the price level
Sn − µ. Note that the model introduced in this paper is enhanced version of the
model established in [2].
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2 The trading times and the avalanche length

We define the trading times (τi)i≥0 and the intertrading times (Ti)i≥1:

• The trading times τ0 = Y0, τi = inf {Yn > τi−1 : V (Yn, Sn) > 0},
• The intertrading times Ti = τi − τi−1.

We consider two different execution mechanisms, namely Type I trades (next
trade occurs after excursions to the next running maximum) and Type II trades
(mid-price falls quickly by µ steps and then goes up by µ or more). Thus, the i-th
trade, i ≥ 1, is the Type I trade if S(τi) > S(τi−1), otherwise it is the Type II trade.

The avalanche length Aµ,ε is defined as:

Aµ,ε = T1 + · · ·+ Tk,

where for k ≥ 1 and T1 < ε, ..., Tk < ε, Tk+1 ≥ ε, and ε > 0.

A path decomposition for the full avalanche length

Let us define the following four sets of random walk paths of length n ≥ 1:

Un = {(z0, ..., zn) ∈ Zn+1 : z0 = 0, |zj − zj−1| = 1 for j = 1, ..., n},

An,µ = {z ∈ Un : z0 = 0,−µ < zk ≤ 0 for 0 ≤ k ≤ n− 1 and zn = +1},

Bn,µ = {z ∈ Un : z0 = 0,−µ < zk ≤ 0 for 0 ≤ k ≤ n− 1, zn−1 = 0 and zn = −1},

Cn,µ = {z ∈ Un : z0 = 0,min(z0, ..., zn−1) = −µ+ 1 and zn = +1}.

Moreover, define Aµ, Bµ and Cµ as:

Aµ =
⋃
n≥1

An,µ Bµ =
⋃
n≥1

Bn,µ Cµ =
⋃
n≥1

Cn,µ,

and let Aµ(s, t), Bµ(s, t), Cµ(s, t) be the corresponding counting generating func-
tions for the number of steps for the classes Aµ,Bµ,Cµ respectively.

Calculating generating function for not simplified avalanche
length

Motivated by the [1] [XIV.4, P.349], let Uz,n,m be the probability that the mid-price
process with initial position in 0 < z < µ, ends with n steps in m time units at the
barrier 0. For z > 0 we define Uz(s, t) =

∑∞
n=0

∑∞
m=n Uz,n,ms

ntm.
If the increments ∆Yn = Yn − Yn−1 are (1 − θ) distributed for every n, where

θ ∈ (0, 1), we have:

Uz,n+1,m =

m−n∑
l=1

(
1

2
Uz+1,n,m−l +

1

2
Uz−1,n,m−l)θ

l(1− θ), (1)
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with boundary conditions

U0,n,l = Uµ,n,l = 0, n ≥ 1, l ≥ 0,

U0,0,0 = 1, U0,0,l = 0, l ≥ 1,

Uz,0,l = 0, l ≥ 0,

Uz,n,l = 0, l < n.

(2)

By shifting the summation index we obtain

∞∑
n=0

∞∑
m=n

Uz,n,ms
ntm =

∞∑
n=0

∞∑
m=n−1

Uz,n+1,ms
n+1tm.

So we have:

Uz(s, t) =

∞∑
n=0

∞∑
m=n−1

m−n∑
l=1

[
1

2
sUz+1,n,m−lθ

l(1− θ)sn+1tm + · · · ]

=

∞∑
n=0

∞∑
l=1

∞∑
m=n

[
1

2
sUz+1,n,mθ

l(1− θ)sn+1tmtl + · · · ]

=
θt

(1− θt)
(1− θ)s(1

2
Uz+1(s, t) + qUz−1(s, t))

(3)

Following the procedure from [1] [XIV.4, P.349] and by subtracting Uz(s, t) =
λ(s, t)z we get:

Uz(s, t) = A(s, t)λ1(s, t)z +B(s, t)λ2(s, t)z

U0(s, t) = 1,
(4)

where

λ1,2(s, t) =
1− θt±

√
(1− θt)2 − 4θ2(1− θ)2t2s2

θ(1− θ)ts
. (5)

From the boundary conditions:

z = 0 : A(s, t) +B(s, t) = 1

z = µ : A(s, t)λ1(s, t)µ +B(s, t)λ2(s, t)µ = 0,
(6)

we have:

Uz(s, t) =
λ1(s, t)µ − λ2(s, t)µ

λ1(s, t)µ+1 − λ2(s, t)µ+1
. (7)

Lemma 1. The probability generating functions for the classes Aµ,Bµ,Cµ are given
by:
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Aµ(s, t) =
λ1(s, t)µ − λ2(s, t)µ

λ1(s, t)µ+1 − λ2(s, t)µ+1
, (8)

Bµ(s, t) = Aµ(s, t), (9)

Cµ(s, t) = Aµ(s, t)−Aµ−1(s, t). (10)

Proof. Equations (8) and (9) follow from equation (7). Note that the class Cn,µ
consists of the paths of length n that hit the level −µ + 1, and thus the set Cn,µ
does not contain any element that belongs to the set An,µ−1. Further, the class
Cn,µ contains paths of length n that does not go below the level −µ and thus
the class Cn,µ contains all elements from the class An,µ except the elements that
belong to the class An,µ−1, i.e. Cn,µ = An,µ \ An,µ−1. Since An,µ−1 ⊆ An,µ and
Cn,µ = An,µ \An,µ−1 the equation (10) holds true.

Proposition 1. The generating function of the time to the next trade is given by

E[zT1 ] = Aµ(z) +
Bµ(z)

1−Bµ(z)
· Cµ(z). (11)

Once the law of T1 is found, we can compute the avalanche length distribution.

Theorem 1. The full avalanche length for the symmetric random walk has proba-
bility generating function

E[zL
∗
µε ] =

P [T1 > ε]

E[1− zT1 ;T1 ≤ ε] + P [T1 > ε]
, (12)

where T1 has the probability generating function given in (11) above.

Proof. Since (Ti)i≥1 are independent and identically distributed we have

E[zL
∗
µε ] =

∑
k≥0

E[zT1zT2 · · · zTk : T1 ≤ ε, T2 ≤ ε, ..., Tk ≤ ε, Tk+1 > ε]

=
P [Tk+1 > ε]

E[1− zT1 : T1 ≤ ε] + P [T1 > ε]
=

P [T1 > ε]

E[1− zT1 : T1 ≤ ε] + P [T1 > ε]
.
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1 Introduction

Machine learning models are frequently used to select targets for an action such as
a medical treatment or a marketing campaign. A proper solution to this problem is
uplift modeling which uses two training sets: a treatment set with objects subjected
to an action, and a control set with objects left untreated. The goal is to model the
difference in responses in both groups conditional on the predictors.

More formally, let x be a feature vector describing a customer, yT the numerical
outcome (e.g. purchase value) we would achieve after targeting the customer, and
yC the numerical outcome we would achieve had the customer not been targeted.
Our purpose is to build a linear model of the form xβU which predicts the quantity
yT − yC , called the uplift. The goal of this paper is to find as good an estimator of
βU as possible.

Performance of an estimator is typically measured by predictive mean squared

error E ‖Xtestβ̂U − Xtestβ
U‖2, where Xtest ∈ Rntest×p is a matrix of predictors of

observations which are not used for training. For unbiased estimators this error is
determined solely by the estimator’s covariance matrix [2] which should be as small
as possible.

We also introduce a training matrix X ∈ Rn×p. Rows xi. of X are generated
independently from each other and follow the same distribution. We also define

the matrices XT ∈ Rn
T×p, XC ∈ Rn

C×p whose rows are rows from X assigned
to treatment and control groups respectively; nT and nC denote, respectively, the

∗Corresponding author: krzysztof.rudas@ipipan.waw.pl
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number of cases in the treatment and control training sets with n = nT + nC .

Denote by qT = nT

n and qC = nC

n the proportions of cases in both groups.

Likewise we define treatment and control response vectors yT ∈ Rn
T

and yC ∈
Rn

C

and denote by y the combined vector of all responses. Assumed relationships
in the data can be written as

yC = XCβC + εC , (1)

yT = XTβC +XTβU + εT = XTβT + εT , (2)

where βC are the true response coefficients in the untreated population, βT is the
respective treatment coefficient vector, and βU is the vector of coefficients defining
the strength and direction of the effect of the action on a given individual.

Random vectors εT and εC denote random components of the responses in the
treatment and control groups. It is assumed that X, εT and εC are independent
of each other. Moreover, we assume that E εTi = εCi = 0, Var εTi = (σT )2 and
Var εCi = (σC)2.

The assignment to the treatment and control group is assumed to be random,
conditional on fixed values of nC and nT . This type of assignment is call complete
randomization in [7].

2 The double estimator

A most obvious idea for estimating the unknown vector βU is to estimate βT and
βC using separate linear models and then subtract their coefficient vectors. This
kind of approach will be referred to as the double estimator.

Definition 1. A vector β̂Ud given by the formula:

β̂Ud = (XT ′XT )−1XT ′yT − (XC ′XC)−1XC ′yC (3)

is called the double estimator of the parameter vector βU .

Let us now give some results on the behaviour of the double estimator.

Theorem 1. Assume that the predictor matrix X is random, Ex′i. = 0, and
Varx′i. = Σ. Assume further, that complete randomization was used. Then

1. β̂Ud is unbiased, i.e. E β̂Ud = βU ,

2. if, in addition, each row xi. of the matrix X follows the normal distribution

p(0,Σ), then Var β̂Ud =
(

(σT )2

nT−p−1
+ (σC)2

nC−p−1

)
Σ−1,

3. if n→∞ with the proportions qT , qC fixed, then

√
n
(
β̂Ud − β

U
)

d−→p

(
0,

(
(σT )2

qT
+

(σC)2

qC

)
Σ−1

)
.
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The double estimator uses two separate models, each constructed on a different
subset of data. Splitting the training data seems to make the variance of the es-
timator worse. The question therefore arises whether it is possible to construct a
single estimator using the whole dataset.

3 The uplift estimator

The first idea for building a more direct uplift estimator is very simple. We simply
reverse the sign of the response in the control group and build a regression model
on concatenated data (with some weighting of cases).

Definition 2. Consider the following transformation ỹ of the response vector y:

ỹi =

{
1
qT
yi if gi = T,

− 1
qC
yi if gi = C.

(4)

A vector β̂Uz given by the formula

β̂Uz = (X ′X)
−1
X ′ỹ (5)

is called the uplift estimator of the parameter vector βU .

Another way to look at this estimator is to rewrite it as:

βUz =
1

qT
(X ′X)−1XT ′yT − 1

qC
(X ′X)−1XC ′yC

which reveals that it is a modification of the double estimator where the matrices
(XT ′XT )−1 and (XC ′XC)−1 are replaced with a single estimate (X ′X)−1 made on
the full dataset. Notice that, due to randomization, the true underlying covariance
matrices are identical in the treatment and control groups, so one can expect that

this estimate will be better than both (XT ′XT )−1 and (XC ′XC)−1.
To verify whether the uplift estimator is really superior, let us first look at its

performance in a very special case when βT = −βC .

Theorem 2. Assume that βT = −βC , qT = qC = 1
2 , σT = σC = σ, and that

complete randomization is used. Then

1. β̂Uz is unbiased,

2. if, in addition each row xi. of the matrix X follows the normal distribution

p(0,Σ), then Var β̂Uz = 4σ2 Σ−1

n−p−1 .

Comparing with the variance of the double estimator:

Var β̂Uz = 4σ2 Σ−1

n− p− 1
< 4σ2 Σ−1

n− 2p− 2
= 2σ2 Σ−1

n
2 − p− 1

= Var β̂Ud

we see that the uplift estimator has a lower variance and thus lower MSE. Now
we introduce a theorem characterizing the behavior of the uplift estimator in the
general case.
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Theorem 3. Assume that the predictor matrix X is random with Ex′i. = 0,
Varx′i. = Σ, and that complete randomization was used. Then

1. β̂Uz is unbiased.

2. As n→∞ with the proportions qT , qC fixed

√
n(β̂Uz − βU )

d−→p

(
0,Σ−1

(
(σT )2

qT
+

(σC)2

qC

)
+ Σ−1 Var(x′i.xi.b)Σ

−1

)
,

where b = qCβT+qT βC√
qCqT

=
√

qC

qT
βT +

√
qT

qC
βC .

After comparing the asymptotic variances of the double and uplift estimators, it
becomes clear that the latter involves an additional nonnegative term Var(x′i.xi.b).
Counterintuitively, fitting a single model gives an asymptotically worse estimator.
Of course, the conclusions may not hold for smaller samples. Theorem 2 is a special

case in which b = 0, when β̂Uz is in fact better.

4 The corrected uplift regression estimator

In this section we introduce a new estimator (first appeared in [1]), which combines
the benefits of the double estimator (good asymptotic behaviour) and the uplift
estimator (better estimation of (X ′X)−1). Our new approach is based on uplift
regression, but we modify the response using corrections to βT and βC . These
corrected coefficients will reduce the additional term b in Theorem 3 to 0.

More formally, we introduce a vector β∗ and use it to obtain corrected coeffi-
cients: βT∗ = βT − β∗ and βC∗ = βC − β∗. It’s not difficult to see that:

βT∗ − βC∗ = βT − β∗ − βC + β∗ = βU .

Pick β∗ = qCβT + qTβC . When we replace βT with βT∗ and βC with βC∗ the
vector b in Theorem 3 becomes:

b =

√
qC

qT
βT∗ −

√
qT

qC
βC∗ =

√
qC

qT
(βT − β∗) +

√
qT

qC
(βC − β∗) = 0,

so after this correction the additional term in the asymptotic variance of β̂Uz van-
ishes.

Unfortunately we cannot compute β∗ directly, because we don’t know the exact
values of βT and βC . To solve this problem we will estimate β∗ from data. Define
the vector y∗ as:

y∗i =

{
qC

qT
yi, if gi = T

qT

qC
yi, if gi = C

and apply the classical least squares estimator to it: β̂∗ = (X ′X)−1X ′y∗. We
cannot directly change the true coefficients βT and βC , so instead we will modify

the response y by subtracting Xβ̂∗ from it. As a result we obtain the following
two-stage estimator:
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Definition 3. A vector β̂Uc given by the formula

β̂Uc = (X ′X)−1X ′ỹc,

where the ˜operator is given in Definition 2 and

yc = y −Xβ̂∗,

is called the corrected uplift regression estimator of the parameter vector βU .

The following theorem shows that we do indeed obtain an improvement.

Theorem 4. Assume that the predictor matrix X is random, Ex′i. = 0, and
Varx′i. = Σ. Assume further that complete randomization was used. Then

1. β̂∗ is an unbiased estimator of β∗,

2. β̂Uc is an asymptotically unbiased estimator of βU ,

3. if n→∞ with the proportions qT , qC fixed, then
√
n(β̂Uc − βU )

d−→p

(
0,
(
σT

2

qT
+ σC

2

qC

)
Σ−1

)
.

It can be seen that the corrected estimator has the same asymptotic distribution

as the double regression estimator. Furthermore, both estimators β̂∗ and β̂UC are
computed based on the full dataset using better estimates of (X ′X)−1, as does the
uplift regression estimator. We recommend the corrected uplift regression estimator
as the right choice for uplift linear regression.

Bibliography
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Abstract: Previous analysis of electroencephalogram (EEG) data from [9] showed
that stochastic modelling of EEG features can improve the explanation of variation
in neurodevelopmental and cognitive outcomes of children who were affected by
cerebral malaria. In our analysis, EEG increments are viewed as discrete time ob-
servations from a diffusion process with marginal generalized Gaussian distribution
(GGD). The GGD parametrization comprises both light-tailed and heavy-tailed
distributions. Two versions of this model were fit to the data. In the first model,
marginal distributions were from the light-tailed GGD subfamily. In the second
model, marginal distributions were heavy-tailed (Student), and the tail index was
estimated using the empirical scaling function. The estimated parameters from
models across EEG channels were explored as potential predictors of neurocogni-
tive outcomes of these children 6 months after recovering from illness. Some of these
EEG parameters were shown to be important predictors of neurodevelopment and
cognition.

Keywords: Generalized Gaussian distribution, Tail index, EEG modelling, Elastic
net regression.

AMS subject classification: 62G07, 62J20, 62P10.

1 Introduction

Cerebral malaria is the most severe neurological complication of infection with a
parasite Plasmodium falciparum where 90% of all cases occur in sub-Saharan Africa.
Survivors sustain brain injury, which may affect subsequent neurodevelopment and
cognitive functioning. Identification of factors that can predict the extent of neu-
rocogntive impairment and other outcomes following cerebral malaria illness is an
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important problem. Electroencephalogram (EEG) is used for monitoring electrical
neural activity of the brain and signals are captured by multiple electrodes called
channels located over the scalp. In this analysis we build upon the past work done
in [9] and we investigate the underlying stochastic processes of EEG data. The anal-
ysis shows that the distributions of EEG increments are symmetrical and display
both heavy and lighter tails. We provide a unifying stochastic model that captures
different types of tails across the range of model parameters.

2 Distributional properties of EEG increments

Our approach in dealing with EEG signal is based on its transformation into EEG in-
crements, which have a symmetric distribution with the maximum at zero. To reflect
the diversity of the empirically observed distribution candidates, we parametrize the
probability density function (PDF) of the distribution of increments as follows:
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(1)

where the value of parameter b is used as an indicator for making a distinction
between light-tailed (b = 0) and heavy-tailed (b > 0) distributions within this
family. We will refer to the distributions from this family as generalized Gaussian
distribution (GGD). The subfamily characterized by b = 0 resembles the usual
GGD parametrization including, for s = 2, the zero-mean normal distribution with
variance σ2. For more details on light-tailed GGD subfamily we refer to [8] and [4].
For b > 0, distributions in the GGD subfamily admit heavy tails, e.g., for s = 2 this
distribution is of the Student type. For more information on Student distribution
and related processes we refer to [6], whereas for parametrization similar to (1) we
refer to [7].

In order to characterize important probabilistic properties of increments includ-
ing their dependence structure, we view the EEG increments as discrete-time obser-
vations from the diffusion process (Xt, t ≥ 0) with the stationary PDF (1). Since
the PDF (1) is continuous, bounded, and strictly positive on the whole R, according
to the Theorem 2.1, page 193 in [1] the stochastic differential equation (SDE)

dXt = −θXt dt+ v(t) dBt, θ > 0, t ≥ 0, (2)

driven by the standard Brownian motion (Bt, t ≥ 0), admits the unique weak
ergodic solution and defines the diffusion with stationary distribution (1), which we
call the generalized Gaussian diffusion (GGDiff).
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3 Parameter estimation

Estimation of light-tailed GGD parameters

In the light-tailed case (b = 0), the two-dimensional parameter ζ = (s, σ2) of the
stationary distribution of the GGDiff X = (Xt, t ≥ 0) is estimated by the quasi-
likelihood method. For the purpose of estimation of parameter ζ we disregard the
existing exponentially decaying autocorrelation structure of the diffusion and define
the quasi log-likelihood function as

l(ζ) =

n∑
i

ln

(
1

2(sσ2)1/sΓ
(
1 + 1

s

)e− |Xi|ssσ2

)
, (3)

The estimate ζ̂ = (ŝ, σ̂2) of the parameter ζ = (s, σ2) is then obtained by maximising
(3), which can be performed using existing non-linear optimization methods. For
more details on maximum likelihood estimation for diffusion processes we refer to
[2] and [3].

Tail index estimation

Recall that for b > 0 the distribution (1) is heavy-tailed. The tails of this distribu-

tion decay as |x|−1−s
(
σ2

b +1
)
, so the tail index is of the form α = s

(
σ2

b + 1
)

. To

estimate the tail index, we use the approach introduced in [5] based on the empiri-
cal scaling function. The shape of the scaling function is strongly influenced by the
tail index and graphical inspection is used for estimation of the tail index of the
corresponding distribution. An example of this can be seen in Figure 1.
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Figure 1: Tail index estimates of EEG increments
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4 Prediction of neurodevelopmental and cognitive
scores

Measures included in the study

Data were collected during the observational study of the pathogenesis of severe
malaria in surviving children and EEG signals were recorded during coma for the
children who were diagnosed with cerebral malaria. Age-independent single measure
of neurodevelopment and cognition (z-score) was obtained for children enrolled in
the study. Other non-EEG data that were collected during the study included demo-
graphic, anthropometric and socioeconomic characteristics, along with biomarker
panels from plasma and cerebrospinal fluid taken at the point of hospitalization.

Methods and models used

To identify important predictors of neurodevelopment and cognition 6 months after
the coma from cerebral malaria, elastic net regression was used. The method was
introduced in [10] as a way of controlling for correlations among predictors and deal-
ing with the case where the number of predictors is much bigger than the number of
observations, which was the case in our analysis. Additionally, elastic net regression
was chosen in accordance with the previous analysis of the same data in [9]. The
response variable was the standardized neurodevelopment or cognitive score taken
6 months after the discharge from the hospital. Predictor variables were taken from
three sets of features. First feature matrix included just the non-EEG features.
Second feature matrix included a combination of non-EEG features and EEG fea-
tures obtained from fitting GGD to EEG increments (estimates of s and σ2). Third
feature matrix was a combination of non-EEG features and median values of tail
index estimates α. To reduce the noise of this variable within the model, additional
feature matrix was created by classifying tail index values based on distributional
tertiles. In all three feature matrices, we included socio-demographic characteristics
and the neurodevelopmental or cognitive score immediately after discharge from the
hospital (baseline ND).

5 Results and discussion

Our results show that the baseline neurodevelopmental score (taken right after
coma) was the most important predictor of neurodevelopment at point 6 months
after coma which was expected as it is a direct measure of the outcome variable
taken at a different time point. Other non-EEG features retained in our model
generally overlap with the non-EEG features found to be important predictors in
the analysis of [9] and mostly contain biomarker panels from cerebrospinal fluid
and/or plasma. The addition of EEG features from fitting of GGD and estimation
of tail index resulted in an improved RMSE for both light-tailed and heavy-tailed
stochastic models, which can be seen in Table 1.
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Table 1: Model comparison based on elastic net regression results

Model features included
(number of features)

RMSE Number of
non-zero

coefficients

Number of non-
zero coefficients
from EEG fea-
tures subset

Non-EEG features (54) 0.5670 12 N/A

Non-EEG (54) and GGD (38) fea-
tures

0.5655 13 1

Non-EEG (54) and continuous tail
index features (19)

0.5670 12 0

Non-EEG (54) and categorical tail
index features (38 dummy vari-
ables)

0.5499 10 1

In summary, the addition of stochastic EEG modelling improved the prediction
of children’s brain function 6 months following coma. Further improvement can
be made by investigating other marginal distributions appropriate for modelling of
EEG signal increments and extending the analysis to other infectious diseases that
could affect the brain.
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Abstract: We are interested in studying neural networks’ potential to predict
survival in oncology. In a clinical study in oncology, the number of variables to
characterize patients can be huge with, for example, clinical, genomic, and radiology
image data. In contrast, the number of patients in cohorts remains relatively small.
We are in what is called a high-dimensional framework, which is when the number
of variables is much larger than the sample size. A classical model used to deal
with survival data is the Cox model. Some regularization procedures have been
proposed to deal with this model in high-dimension. However, they prove limited
when the dimension becomes too large. Moreover, the Cox model’s hypothesis is not
always satisfied. Neural networks have provided state-of-the-art models in a lot of
research domains. We have explored their potential in survival analysis, especially
in high-dimension, and we considered two strategies of neural networks. The first
one is based on the Cox model: the neural network replaces the linear dependency
in the covariates to determine the Cox hazard function. A second and less studied
approach based on a discrete-time model predicts the discretized hazard function
directly. We have adapted this method to the high-dimensional setting. This paper
focuses on the last neural network and compares it to the neural network based
on the Cox model. We also consider a Lasso procedure applied to the Cox partial
log-likelihood as the benchmark. We applied them to one real dataset in oncology,
and the neural network based on a discrete-time model gets the best performance.

Keywords: Neural networks, survival analysis, high-dimension, Cox model
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1 Introduction

Survival analysis consists of studying the elapsed time until an event of interest,
such as the death or recovery of a patient in medical studies. This paper aims to
compare methods to predict a patient’s survival from clinical and gene expression
data.
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The Cox model [4] is the reference model in the field of survival analysis. It relates
the survival duration of an individual to the set of explanatory covariates. With
high-throughput sequencing techniques, transcriptomics data are more and more
often used as covariates in survival analysis. Adding these covariates raise issues
of high-dimensional statistics, when we have more covariates than individuals in
the sample. Methods based on regularization or screening [6, 13] have been de-
veloped and used to solve this issue. Another particularity of the Cox model is
that it relies on the proportional hazard hypothesis; and in its classical version, it
does not account for nonlinear effects or interactions, which is limited in some real
situations. Therefore, in this paper, we focus on another type of methods: neural
networks. Deep learning methods are more and more popular, notably due to their
flexibility and their ability to handle interactions and nonlinear effects, including
in the biomedical field. In this paper, we focus on a neural network based on a
discrete-time survival model, as introduced by Biganzoli et al. [2]. Biganzoli et
al. [2] have studied this neural network only in low-dimension. Our objective is to
study and adapt this model to the high-dimensional cases and compare its perfor-
mances to two other methods: the two-step procedure to estimate the entire risk in
a Cox model, with the classical estimation of the regression parameters with a Lasso
penalty and a kernel estimator of the baseline function (as in [8]), noted Cox-L1 in
the paper, and the Cox-nnet neural network [3] based on the partial likelihood of the
Cox model. Section 2 presents the different models compared to predict patients’
survival in high-dimension. Section 3 shows the results of the studied methods on
a real dataset. We also did a simulation study that we do not present in this doc-
ument, but we detailed its design and results in Sautreuil et al. [12]. Finally, we
underline the results to conclude with the potential of neural networks in survival
analysis.

2 Models

Cox-nnet

In 1995, Faraggi et al. [7] developed a neural network based on the proportional
hazards model. The idea of Faraggi et al. [7] was to replace the linear prediction
of the Cox regression with the neural network’s hidden layer’s output. Faraggi et
al. [7] only applied their neural network to survival analysis from clinical data, in
low dimension. More recently, some authors revisited this method [3, 9, 10]. We
will use Cox-nnet [3], which was already applied in a high-dimensional setting, as a
benchmark in our study.

Discrete-time neural network

Biganzoli et al. [2] have proposed a neural network based on a discrete-time model.
They introduced L time intervals Al = (tl−1, tl], and build a model predicting
in which interval, the failure event occurs. We write the discrete hazard as the
conditional probability of survival:

hil = P (Yi ∈ Al|Yi > tl−1), (1)
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with Yi the survival time of individual i. Biganzoli et al. [2] duplicates the individu-
als as input of the neural network. Indeed, the Biganzoli et al. [2]’s neural network
takes as input the set of variables of the individual and an additional variable cor-
responding to the mid-point of each interval. Due to the addition of this variable,
the p variables of each individual are repeated for each time interval. The output
is thus the estimated hazard hil = hl(Xi, al) for the individual i at time al. The
duplication of individuals gives to that neuron network a more original structure
than that of a classical multi-layer perceptron. Biganzoli et al. [2] initially used a
3-layer neural network with a logistic function as the activation function for both
the hidden and output layers. The output of the neural network with H neurons
in the hidden layer and p+ 1 input variables is given by:

hil = h(xi, tl) = f2

(
a+ βT f1

(
b+WTXi.

))
,

where W = (wdh)1≤d≤p+1,1≤h≤H , and β = (β1, . . . , βH)T are the weights of the
neural network, a and b are the biases of the neural network to be estimated, and
f1 and f2 the sigmoid activation functions. The target of this neural network is
the death indicator dil, which indicates if the individual i dies in the interval Al.
We introduce li ≤ L the number of intervals in which individual i is observed,
di0, . . . , di(li−1) = 0 whatever the status of the individual i and dili is equal to 0 if
the individual i is censored and 1 otherwise. The cost function used by Biganzoli
et al. [2] is the cross-entropy function and the weights of the neural network can
be estimated by minimizing it. Biganzoli et al. [2] added a ridge penalty to their
cross-entropy function:

L(V ) = −
n∑
i=1

li∑
l=1

dil log(hil) + (1− dil) log(1− hil) + λ‖V ‖2, (2)

with λ the hyperparameter and V = (WT , βT , aT , bT ) the weights and biases of the
neural network. In Biganzoli et al. [2], λ was chosen by deriving an Information
Criterion. We choose instead to use cross-validation since it improves model the
predictive capacity.

After estimating the parameters of the neural network by minimizing the loss

function (2), the output obtained is the estimate of the discrete risk ĥil for
each individual i and the survival function of individual i is estimated using:

Ŝ(Tli) =
∏li
i=1(1−ĥil). This model was only applied for low-dimensional inputs, and

this paper investigates its performance and capacity to adapt to high-dimensional
settings. We denote this network NNsurv. We noticed an improvement of the per-
formance when using a ReLU activation function for the hidden layers and thus used
it instead of the original sigmoid functions. Moreover, the original neural network
only has one hidden layer. We propose to add one supplementary hidden layer to
study if a deeper structure could improve the neural network prediction capacity.
We call it the deeper version NNsurv-deep.
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3 Results

We compare the performances of the four models (Cox-L1, Cox-nnet, NNsurv,
NNsurv-deep) on a real dataset.

Concordance index

To compare the performance, we use the C-index as proposed by Antolini et al. [1],
noted Ctd. The index measures whether the prediction of the model under study
matches the rank of the survival data. A value of the C-index close to one indicates
the discrimination performance of the model is good.

Application on real breast cancer dataset

The METABRIC dataset (for Molecular Taxonomy of Breast Cancer International
Consortiulm) [5, 11] consisted of six clinical variables (age, tumor size, hormone
therapy, chemotherapy, tumor grades, number of invaded lymph nodes), and 863
genes for 1981 patients. The percentage of censored individuals is equal to 55%.

The results of the METABRIC dataset are summarized in Table 1. We can
see that NNsurv-deep manages to get the highest value of Ctd. The Ctd of NNsurv
is equivalent to that of Cox, but Cox-nnet has a lower value. Due to the low
difference of C-index between the different methods, we also used another metric,
the Integrated Brier Score. The detailed results are in Sautreuil et al. [12].

Cox-L1 Cox-nnet NNsurv-deep NNsurv

METABRIC Ctd 0.6757 0.6676 0.6853 0.6728

Table 1: Results of different methods on the breast dataset (METABRIC)

4 Discussion

This work is a study of neural networks’ potential for the prediction of survival in
high-dimension. We studied two approaches of neural networks: a first one based
on the Cox model, called Cox-nnet [3] and a second one based on a discrete-time
model [2] and its adaptation to the high-dimensional setting was the main contribu-
tion of our work. We compared these two approaches: Cox-nnet and this based on
a discrete-time model adapted to the high dimension (NNsurv, and NNsurv-deep)
with the standard Cox model coupled with Lasso penalty. On the METABRIC
data, NNsurv-deep performs the best, but only marginally better than the Cox
partial log-likelihood-based Lasso estimation procedure (Cox-L1), suggesting slight
non-linearity and interactions. We also compared these methods on simulation
datasets. This comparison study is detailed in Sautreuil et al. [12]. We concluded
from the simulation study that the best neural network in most situations is Cox-
nnet. It can handle nonlinear effects as well as interactions. However, the neural
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network based on discrete-time modeling, which directly predicts the hazard risk,
with several hidden layers (NNsurv-deep), has shown its superiority in the most
complex situations, especially in the presence of non-proportional risks and inter-
secting survival curves. The neural networks seem to be interesting methods to
predict survival in high-dimension and, in particular, in the presence of complex
data. But, the Cox model stays privileged by the domain’s users nowadays thanks
to the ease of use and interpretation.
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Abstract: The Markov assumption (MA) is fundamental to the empirical validity
of reinforcement learning. In this paper, we review the Forward-Backward Learning
procedure developed by [6] to test MA in sequential decision making. The test does
not assume any parametric form on the joint distribution of the observed data and
plays an important role for identifying the optimal policy in high-order Markov
decision processes (MDPs) and partially observable MDPs.
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1 Introduction

Reinforcement learning (RL) is a general technique that allows an agent to interact
with an environment. In RL, the state-action-reward triplet is typically modelled by
the Markov decision process (MDP, see e.g. [5]). Central to the empirical validity
of various RL algorithms is the Markov assumption (MA). Under MA, there exists
an optimal stationary policy that is no worse than any non-stationary or history-
dependent policies [5]. When this assumption is violated, however, the optimal
policy might depend on lagged variables and any stationary policy can be sub-
optimal. Thus, MA forms the basis for us to select the set of state variables to
implement RL algorithms.

Shi et al. [6] recently developed a Forward-Backward Learning procedure to test
MA in sequential decision making. In the following, we summarize the advances
of this test. First, the test is useful in identifying the optimal policy in high-order
MDPs (HMDPs). Under HMDPs, the optimal policy at time t depends not only
on the current state variables St, but also the past state-action pairs (St−1, At−1),
· · · , (St−κ0+1, At−κ0+1) for some κ0 > 1. In real-world applications, it remains
challenging to properly select the look-back period κ0. On one hand, κ0 shall be
sufficiently large to guarantee MA holds. On the other hand, including too many
lagged variables will result in a very noisy policy. To determine κ0, we can construct
the state by concatenating measurements taken at time points t, · · · , t− k + 1 and

∗Corresponding author: c.shi7@lse.ac.uk
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sequentially apply the test for k = 1, 2, · · · , until the null hypothesis MA is not
rejected. Then we use existing RL algorithms based on the constructed state to
estimate the optimal policy. It was shown in Section 5 of [6] that the estimated
policy based on the constructed states achieves the largest value in a number of
cases.

Second, the test is useful in detecting partially observable MDPs (POMDPs).
Suppose we concatenate measurements over sufficiently many decision points and
the test still rejects MA. Then we shall consider modelling the system dynamics by
POMDPs or other non-Markovian problems. Applying RL algorithms designed for
these settings has been shown to outperform those for standard MDPs [see e.g. 3].

Third, major challenges for testing MA arise when the state vector is moderate or
high-dimensional. This is certainly the case as we convert the process into an MDP
by concatenating data over multiple decision points. Modern machine learning (ML)
algorithms are well-suited for prediction tasks in high dimensions. Yet, the large
bias of the resulting estimates makes statistical inference (e.g., hypothesis testing)
extremely difficult. The key ingredient of the test lies in constructing a doubly
robust estimating equation to alleviate the biases. This ensures it has a tractable
limiting distribution even in high dimensions. Consequently, it well controls the
type-I error rate (see Theorem 3 of [6]).

Lastly, the test is valid as either the number of trajectories n or the number
of decision points T in each trajectory diverges to infinity. It can thus be applied
to a variety of sequential decision making problems ranging from the Framingham
heart study [7] with over two thousand trajectories to the OhioT1DM dataset [4]
that contains eight weeks’ worth of data for six trajectories. It can also be applied
to applications from video games where both n and T approach infinity.

2 Model Setup

MDP and Existence of the Optimal Stationary Policy

The objective of RL is to learn an optimal policy that maximizes discounted cumu-
lative reward under this policy. In MDPs, it is typically assumed that the Markov
assumption holds such that future state and current reward are conditionally inde-
pendent of the past observations given the current state-action pair. Under MA,
there exists an optimal stationary policy whose value is no worse than any history-
dependent policies (see e.g., Lemma 1 in [6]). This observation forms the basis of
most existing RL algorithms. Under MA, it suffices to restrict attention to station-
ary policies. It greatly simplifies the estimating procedure of the optimal policy.
When MA is violated however, we need to focus on history-dependent policies as
they may yield larger value functions. In the following, we introduce two variants
of MDPs, including HMDPs and POMDPs. These models are illustrated in Figure
1.
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Figure 1: Causal diagrams for MDPs, HMDPs (second order) and POMDPs.
(St, At, Rt) denotes the state-action-reward triplet at time t. The solid lines repre-
sent the causal relationships and the dashed lines indicate the information needed
to implement the optimal policy.

HMDP

It can be seen from Figure 1 that HMDPs are very similar to MDPs. The dif-
ference lies in that in HMDPs, St+1 and Rt depend not only on (St, At), but
(St−1, At−1), · · · , (St−κ0+1, At−κ0+1) for some integer κ0 > 1 as well. For any inte-
ger k > 0, define a new state variable

St(k) = (S>t , At, S
>
t+1, At+1, · · · , S>t+k−1)>.

Let At(k) = At+k−1 and Rt(k) = Rt+k−1 for any t, k. It follows that the new process
formed by the triplets (St(κ0), At(κ0), Rt(κ0))t≥0 satisfies MA. As such, there exists
an optimal stationary policy that depends only on St(κ0). This suggests that in
HMDPs, identification of the optimal policy relies on correct specification of the
look-back period κ0. To determine κ0, we can sequentially test whether the triplets
{(St(k), At(k), Rt(k))}t≥0 satisfy MA for k = 1, 2, · · · , until the null of MA is not
rejected.

POMDP

The POMDP model can be described as follows. At time t−1, suppose the environ-
ment is in some hidden state Ht−1. The hidden variables {Ht}t≥0 are unobserved.
Suppose the agent chooses an action At−1. Similar to MDPs, this will cause the
environment to transition to a new state Ht at time t. At the same time, the agent
receives an observation St and a reward Rt that depend on Ht and At−1. The
observations in POMDPs do not satisfy the Markov property. As a result, MA will
not hold no matter how many past measurements the state variable includes. This
suggests in POMDPs, the optimal policy could be history dependent.



Testing for the Markov property in sequential decision making 115

3 Testing the Markov Assumption

We introduce the Forward-Backward Learning procedure in this section. We focus
on testing the following pair of hypotheses:

H0: The system is a MDP, i.e, MA holds v.s
H1: The system is a HMDP or POMDP.

Assume the data generating process is stationary in time. Theorem 1 in [6] charac-
terizes MA based on the notion of Conditional Characteristic Function (CCF). It
shows that under H0,

[{exp(iµ>St+q+1)− ϕ∗(µ|Xt+q)} exp(iν>Xt−1)] = 0, (1)

for any t, q, µ, ν where Xt = (S>t , At)
>, the state-action pair at time t and ϕ∗

denotes the CCF of St+1 given Xt, i.e., ϕ∗(µ|•) = {exp(iµ>St+1)|Xt = •}.
To construct the test statistic based on (1), the CCF ϕ∗ needs to be estimated

from the observed data. Modern machine learning algorithms are well-suited to
estimating ϕ∗ in moderate or high-dimensional cases. However, naively plugging
ML estimators will cause a heavy bias in the estimating equation. Because of that,
the resulting test does not have a tractable limiting distribution. Kernel smoothers
or local polynomial regression can be employed to reduce the estimation bias by
properly choosing the bandwidth parameter. However, these methods suffer from
the curse of dimensionality and will perform poorly in cases where concatenate data
over multiple decision points to detect HMDP.

The Forward-Backward Learning method addresses these concerns by present-
ing a doubly-robust estimating equation to alleviate the estimation bias. When
observations are time independent, the method shares similar spirits with the dou-
ble machine learning method proposed by [1] for statistical inference of the average
treatment effects in causal inference.

Specifically, define another CCF of Xt−1 given Xt by

ψ(ν|x) = {exp(iν>Xt−1)|Xt = x}.

The procedure is motivated by the following identity,

[{exp(iµ>St+q+1)− ϕ∗(µ|Xt+q)}{exp(iν>Xt−1)− ψ∗(ν|Xt)}] = 0,

for any t > 0, q ≥ 0, µ ∈ Rp, ν ∈ Rp+1. This equation is doubly-robust. That is, it
holds as long as either ϕ∗ or ψ∗ is correctly specified.

Forward-Backward Learning estimates both ϕ∗ and ψ∗ using ML methods with-

out specifying their parametric forms. Let ϕ̂ and ψ̂ denote the corresponding esti-
mators. Note that computing ϕ∗ is essentially estimating the characteristic function
of St given Xt−1. This corresponds to a forward prediction task. Similarly, esti-

mating ψ∗ is a backward prediction task. Thus, ϕ̂ and ψ̂ are referred to as forward
and backward learners, respectively. The procedure constructs a maximum-type
statistic based on these learners and applies the multiplier bootstrap [2] to simulate
the critical value. Please refer to Algorithm 1 of [6] for details.
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Based on this test, we can choose which RL model to use to model the system
dynamics. Given a large integer K, one can sequentially test the null hypothesis
MA based on the concatenated data as described in Section 2 for k = 1, · · · ,K.
Once the null is not rejected, we can conclude the system is a k-th order MDP
and terminate our procedure. Otherwise, we conclude the system is most likely a
POMDP. Please refer to Algorithm 2 of [6] for details.

4 Discussion

In this paper, we briefly review the Forward and Backward Learning procedure [6]
for testing the goodness of fit of a MDP model. The test can be naturally coupled
with existing state-of-the-art RL algorithms to improve their performance. It has
extensive potential values in many real-world applications, including robotics, bid-
ding, ridesharing, mobile health, among others. The validity of the test relies on a
stationarity assumption that requires the observed data process to be stationarity
over time. In theory, under the stationartiy assumption as well as other mild condi-
tions imposed in [6], it would be impossible for the test to reject the null hypothesis
at a small value of k but then rejects the null for a large value of k. However, if
such a phenomenon occurs in practice, then some of the imposed assumptions are
likely to be violated. In particular, the stationarity assumption shall be further
investigated.
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Abstract: Extreme meteorological phenomena such as heavy precipitation seem
to be growing more severe and frequent as a result of accelerating climate change.
Estimation of this evolution falls within the scope of extreme value statistics, to
which end the estimation of the so-called extreme value index is key. We look at
how one can use series of data collected at isolated locations to model extremes of
the whole space-time process by employing the mixed moment estimator of the ex-
treme value index. We show the asymptotic normality of this estimator, seamlessly
incorporating space-time non-stationarity and dependence. For illustration, we ap-
ply the estimator to precipitation data from a homogeneous region in the North
Sea.
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1 Introduction

When discussing the apparent acceleration of climate change, it is vital to analyze
the frequency and severity of extreme weather events, beyond what is observable
with average events. For example, studying extreme precipitation accounting for
potential trend and dependence across time and/or space may lead to more robust
inference, in turn allowing for better preparation against potentially catastrophic
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rainfall. However, estimation of this evolution in extreme weather events remains
subject to large uncertainty.

Extreme Value Analysis provides a complete and flexible framework for the
statistical study of rare and extreme events that may never yet been observed [1].
In this work, we follow a semi-parametric approach, making assumptions regarding
the asymptotic behavior of the tail of the distribution underlying the data, without
demanding a strict parametric fit.

In the univariate case, with {Xi}i≥1 a sequence of i.i.d. random variables with
distribution function (d.f.) F , if there exist constant sequences an > 0, bn ∈ R and
a non-degenerate d.f. G such that

lim
n→∞

P
{

(an)−1(max(X1, . . . , Xn)− bn) ≤ x
}

= G(x)

for all x, then G is of the type of the Generalized Extreme Value distribution

Gγ(x) = exp
(
−(1 + γx)−

1/γ
)
, for 1 + γx > 0. We then write F ∈ D(Gγ), i.e., F

belongs to a max-domain of attraction with extreme value index (EVI) γ. This
index controls the tail weight; with x∗ := sup{x : F (x) < 1} the right endpoint of
F , we have: γ > 0, heavy tails with infinite x∗; γ < 0, light tails with finite x∗;
γ = 0, exponential tails with finite or infinite x∗. Effective estimation of the EVI is
thus paramount to all extreme value statistical endeavors. This is the focus of the
present work.

We consider independent random vectors (Xi,1, . . . , Xi,m) with time points
i = 1, . . . , n, at spatially dependent locations j = 1, . . . ,m. The interest is in
an equivalence class within the max-domain of attraction, allowing the presence of
non-stationarity in the form of a non-monotonic trend. We assume there exists a
baseline d.f. F0 ∈ D(Gγ) for some γ ∈ R such that, for i = 1, . . . , n, j = 1, . . . ,m

lim
x↑x∗

1− Fi,j(x)

1− F0(x)
= c

(
i

n
, j

)
∈ (0,∞) (1)

where Fi,j is the d.f. of Xi,j , x
∗ is the right endpoint of F0, and the scedasis

c(·, j), at each location j, is a positive continuous function on [0, 1]. The scedasis
embodies the so-called space-time trend in extremes [2]. As a result of (1), we have
Fi,j ∈ D(Gγ) with common γ, for all i = 1, . . . , n, and j = 1, . . . ,m. The scedasis
is uniquely determined through

m∑
j=1

Cj(1) = 1 , where Cj(t) :=
1

m

∫ t

0

c(u, j) du , 0 ≤ t ≤ 1.

We further assume that the standardized joint d.f. F̃ (x1, . . . , xm) :=
Fi(Ui,1(x1), . . . , Ui,m(xm)) is independent of i and in a multivariate max-domain
of attraction (see [1]), where Ui,j(t) := ( 1

1−Fi,j )←(t) is the left-continuous inverse of

1/(1− Fi,j). This spatial dependence structure is captured through the tail copula
of (Xi,j1 , Xi,j2), given by
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Rj1,j2(x1, x2) = lim
t↓0

1

t
P (1− Fi,j1(Xi,j1) ≤ tx1 , 1− Fi,j2(Xi,j2) ≤ tx2) ,

for (x1, x2) ∈ [0,∞]2 \ {(∞,∞)} and 1 ≤ j1 , j2 ≤ m.

Under this setup, we propose estimation of the common EVI by the mixed
moment estimator (MMe). In Section 2, we present the MMe and show it is an
appealing estimator for heteroscedastic extremes (asymptotically normal with null
first order bias). Section 3 briefly describes the application of the MMe to precipi-
tation data from the North Sea. A sketch of proof for the main theorem is given in
Section 4.

2 Mixed Moment Estimator

The MMe was introduced in [3] for the univariate, independent setting and seen to
have convenient properties when compared to other common EVI estimators. We
investigate its performance when pooling information from the full set of N := n×m
observations collected across time and space and considering the exceedances of an
overall, random threshold.

Definition 1. Let X1:N ≤ . . . ≤ XN :N be the order statistics of the pooled sample
{Xi,j}ni=1

m

j=1
consisting of N space-time random variables. The mixed moment

estimator of the EVI γ ∈ R is defined as (cf. [3])

γ̂MM
N (k) :=

ϕ̂N (k)− 1

1 + 2 min{ϕ̂N (k)− 1, 0}

where, with XN−k:N the common threshold, MN (k) := 1
k

∑k
i=1 log

(
XN−i+1:N

XN−k:N

)
and

LN (k) := 1
k

∑k
i=1

(
1− XN−k:N

XN−i+1:N

)
,

ϕ̂N (k) :=
MN (k)− LN (k)

(LN (k))2 (2)

is the estimator of the function ϕ(γ) := 1 + γ if γ > 0, ϕ(γ) := 1−γ
1−2γ

if γ ≤ 0.

Compared with the Maximum Likelihood estimator (MLe), the MMe has the
advantage of an explicit and simple form, making it very computationally effective;
also, the MMe is widely applicable, suitable for any γ ∈ R. Its asymptotic properties
have been derived for the i.i.d. univariate case in [3].

To conclude on the asymptotic behavior of the MMe in the present framework,
we make use of the weighted approximation to the tail empirical quantile process
XN−[ks]:N presented in Theorem 2.1 b) of [2]. We must, thus, impose a second order
condition controlling the speed of convergence of the baseline quantile function:
with γ ∈ R, ρ < 0, assume there exist functions ã0, positive and A0, eventually not
changing sign, satisfying limt→∞A0(t) = 0 such that

lim
t→∞

U0(tx)−U0(t)
ã0(t)

− xγ−1
γ

A0(t)
= Ψγ,ρ(x) :=


xγ+ρ − 1

γ + ρ
if γ + ρ 6= 0

log(x) if γ + ρ = 0

,

for all x > 0 (cf. Corollary 2.3.5 in [1]). A similar condition holds replacing ã0,
U0(t) and Ψ by suitable functions a0, b0 and Ψ̄ (cf. Corollary 2.3.7 in [1]). Other
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necessary conditions on the scedasis function are detailed in [2]. We now state the
main result regarding the MMe’s asymptotic normality.

Theorem 1. Under the conditions of Theorem 2.1 of [2], for an appropriate inter-

mediate sequence k≡kn→∞, k/n→0 as n→∞ such that
√
kA0(N/k)→0,

√
k
(
γ̂MM
N (k)− γ

)
d−→ N

(
0, σ2

MM

)
with σ2

MM :=
(1 + γ)2 +

(1+γ)4

γ2

∫∫
[0,1]2

fγ(s)fγ(t)
∑
j1 6=j2

E [αj1 (s)αj2 (t)] ds dt, γ > 0

(1−γ)2(1−2γ)(6γ2−γ+1)
(1−3γ)(1−4γ)

+
(1−γ)4(1−2γ)2

γ2

∫∫
[0,1]2

gγ(s)gγ(t)
∑
j1 6=j2

E [βj1 (s)βj2 (t)] ds dt, γ ≤ 0
(3)

where
fγ(s) := 1− (1 + 2γ)sγ and gγ(s) := (1− 2γ)s−γ − 1, (4)

αj(s) := s−1Wj(s, Cj(1))−Wj(1, Cj(1)) and (5)

βj(s) := s−γ−1Wj(s, Cj(1))−Wj(1, Cj(1)), (6)

for j = 1, . . . ,m and where Wj is a bivariate Wiener process, for each j, as given
in Theorem 2.1 of [2].

Remark 4. The first term appearing in each branch of (3) corresponds to the intra-
station variability, where observations are independent, and thus coincides with the
asymptotic variance in the i.i.d. setting.

3 Application: Extreme Precipitation

Our data consists of daily rainfall totals collected at m = 5 stations within a ho-
mogeneous region in the North Sea, off the coast of the UK. Records span the
Summer and Winter seasons between January 1979 and December 2010, totaling
n = 1358/n = 1341 days, respectively.

Applying the tests given in [2] for each season, we found there is evidence of spa-
tial dependence, as well as of a trend in the rainfall extremes (stronger in Winter).
There was no evidence that assuming a common EVI is inappropriate.

Figure 1 shows clear differences between the MMe and MLe sample paths, to be
studied. The MMe-based approximately 95% confidence bands for γ show that dis-
regarding the dependence structure results in narrower intervals, potentially leading
to underestimated risk of very heavy rainfall. With k = 400 largest observations, the
common threshold is set at 13.2mm/13.9mm, which determines γ̂MM

N,S (400) = 0.118

and γ̂MM
N,W (400) = 0.060.
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Figure 1: MMe sample path (red) for the North Sea precipitation data in the Summer (left) and
Winter (right) seasons, with approximately 95% confidence bands considering spatial dependence (dark
blue) or independence (light blue). Sample path for the MLe (orange) for comparison.

4 Proof of Theorem 1

Proof. For the sake of brevity, we present only a sketch of the proof, which relies strongly

on Theorem 2.1 b) of [2]. Define MN (k) :=
∫ 1

0
log

XN−[ks]:N

XN−k:N
ds and LN (k) :=

∫ 1

0
1 −

XN−k:N
XN−[ks]:N

ds. The asymptotic behavior of ϕ̂N (k) follows from

√
k {ϕ̂N (k)− ϕ(γ)} =

√
k
{
MN (k)− LN (k)− ϕ(γ) (LN (k))2} (LN (k))−2 . (7)

For γ > 0, Theorem 2.1 b) of [2] suggests an analogous result to that of Theorem 2.4.8 of
[1], allowing for the following asymptotic representations

MN (k) = γ +
γ√
k

∫ 1

1
2k

Dm(s) ds+ op

(
1√
k

)
,

LN (k) =
γ

1 + γ
+

γ√
k

∫ 1

1
2k

sγDm(s) ds+ op

(
1√
k

)
and (8)

(LN (k))2 =

(
γ

1 + γ

)2

+
2γ2

(1 + γ)
√
k

∫ 1

1
2k

sγDm(s) ds+ op

(
1√
k

)
,

as n→∞, with Dm(s) :=
∑m
j=1αj(s) and αj(s) as in (5). Then, combining (7) and (8) we

get
√
k {ϕ̂N (k)− ϕ(γ)} d−→ (1 + γ)2

γ

∫ 1

0

fγ(s)Dm(s) ds ,

with fγ(s) as defined in (4); the corresponding variance is

σ2
ϕ =

(1 + γ)4

γ2

∫∫
[0,1]2

fγ(s)fγ(t)

m∑
j1=1

m∑
j2=1

E [αj1(s)αj2(t)] ds dt .

For γ ≤ 0, again by Theorem 2.1 b) of [2] we get the asymptotic representation

(LN (k))2 =

{
a0(N/k)

U0(N/k)

}2{
1

1− γ

}2
{

1 +
2(1− γ)√

k

∫ 1

1
2k

Ym(s)ds+ op

(
1√
k

)}
(9)
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as n→∞, with Ym(s) :=
∑m
j=1βj(s) and βj(s) as in (6). Defining XN (s) := 1− XN−k:N

XN−[ks]:N

and noting that x2

2
< − log(1−x)−x < x2

2
+ x3

3(1−x)
for x ∈ (0, 1), we bound the numerator

of (2) by

LB :=
1

2

{
U0(N/k)

a0(N/k)

}2 ∫ 1

0

{XN (s)}2 ds ≤
{
U0(N/k)

a0(N/k)

}2

(MN (k)− LN (k))

≤ LB +
1

3

{
U0(N/k)

a0(N/k)

}2 ∫ 1

0

{XN (s)}3 {1 + XN (s)} (1 + op(1)) ds .

The last term in the above can be shown to be negligible, in probability, leading to{
U0(N/k)

a0(N/k)

}2

(MN (k)−LN (k))=
1

(1− 2γ)(1− γ)
+

1

γ
√
k

∫ 1

1
2k

(s−γ − 1)Ym(s)ds+ op

(
1√
k

)
.

(10)
Combining (7), (9) and (10) we have that

√
k {ϕ̂N (k)− ϕ(γ)} d−→ (1− γ)2

γ(1− 2γ)

∫ 1

0

gγ(s)Ym(s)ds ,

with gγ(s) as defined in (4). The asymptotic variance follows as before.
Finally, the asymptotics of γ̂MM

N (k) follow by application of Cramér’s delta method.
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Abstract: In regression analysis of the market share data several main parametric and
nonparametric type models are prevalent. We extend this arsenal of possibilities with a new
type labelled combinatorial regression, based on combining n-tuplets of sampling units into
groups and treating them in abstract simplicial complex framework. The novel perspective
is estimated in two stages, using two different initial stage perspectives: multivariate
distance matrix regression and Bradley-Terry based maximum likelihood approach, and a
recently developed simplicial complex network estimation approach on simplicial complexes
in the second, final stage. This allows plethora of future research perspectives and allows
applications also to very small datasets as the number of units in the new model can be
expressed in terms of generalized factorial products of units of original sample. We provide
the analysis of new approach for different n-tuple combinations using generalized Jensen-
Shannon divergence measures and provide short analysis of new estimator properties. In
conclusion, extensions and open questions raised by the new perspective are presented.

Keywords: regression models, abstract simplicial complexes, algebraic topology, simpli-
cial complex networks, Jensen-Shannon divergence

AMS subject classification: 62J99.

1 Introduction - regressions on a simplex

In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion
of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it
represents the simplest possible polytope in any given space (for example, a 0-simplex is a
point, a 1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron,
a 4-simplex is a 5-cell).

A composition is defined as a vector of D positive components x = (x1, x2, . . . , xD)
summing up to a given constant κ. It is generally - although not universally - agreed that
the appropriate sample space for compositional data is the standard simplex (also called
the “unit simplex”). It is defined as

SD = {x = [x1, x2, . . . , xD]|xi > 0, i = 1, 2, . . . , D;
∑D
i=1 xi = κ}.
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In regression analysis with compositional data (CoDa) four main (parametric) type
models are prevalent: multinomial logistic regression, attraction models of various types,
Dirichlet covariance models, and compositional regression. Nonparametric regression with
CoDa at present consists of three models: local polynomial (Di Marzio et al., 2015);
simplicial splines (Machalova, Hron and Talska, 2019); and simplicial wavelets (Srakar
and Fry, 2019).

We extend this arsenal of possibilities with a novel regression perspective (applicable
to simplicial complexes), named combinatorial regression, based on combining n-tuplets
of sampling units into groups. This perspective is based on a broad generalization of the
Full-Factorial Attraction model from marketing (Howie & Kleczyk, 2007). We extend
the Howie and Kleczyk perspective by considering instead of pair of “brands” (regions,
etc.) triplets, quadruplets, indeed, any combinatorial variation of units as the basis for
constructing new regression units.

In our article we develop a large extension of a decade and half ago developed transfor-
mation of the MCI model, called Full-Factorial Attraction Model, as developed in Howie
and Kleczyk (2007). The approach is based on a reconceptualization of any market share
variable for each brand as a series of two-product markets (in this way, the number of
units grows to I!

2!
(see Howie and Kleczyk, 2007 - I is the number of units/brands) which

gains quite a lot of degrees of freedom for the analysis).
The final equation for Full-Factorial Attraction Model is provided below:

mijt = αi + βXijt + εit,

where

• mijt = Mit
(Mit+Mjt)

where i = 1, . . . , I − 1; j = 1, . . . , I − 1 and i 6= j, t = 1, . . . , T ;

• Mit is the market share of brand i at time t;

• Xijt = xit − xjt where i = 1, . . . , I; j = 1, . . . , I and i 6= j, t = 1, . . . , T ;

• t is a time variable and T is the maximal time;

• αi is a parameter for the constant influence of brand i;

• εi is a random error term.

2 Abstract simplicial complexes and construction
of the estimator

Topological data analysis (TDA) is a data analysis method that provides information
about the shape of data. It has been developed within the last twenty years and is rooted
in the mathematical field of algebraic topology (“Topology is the branch of mathematics
that studies shape, and algebraic topology is the application of tools from abstract algebra
to quantify shape.” )

A simplicial complex K consists of:

• A set of objects, V (K), i.e. vertices

• A set, S(K), of finite non-empty subsets of V (K), i.e. simplices such that simplices
satisfy the following conditions:

1. If σ ∈ V (K) is a simplex and τ ∈ σ, τ 6= 0 , then τ is also a simplex;
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2. Every singleton {v}, v ∈ V (K), is a simplex.

We say τ is a face of σ. If σ ∈ S(K) has p+ 1 elements it is said to be a p-simplex. The
set of p -simplices of K is denoted by Kp. The dimension of K is the largest p such that
Kp is non-empty. A map of simplicial complexes K → L is a function f : V (K) → V (L)
such that whenever σ ∈ V (K) belongs to S(K), the image f(σ) belongs to S(L).

We define geometric simplicial complex as a finite collection of simplices K called the
faces of K such that:

• ∀σ ∈ K,σ is a simplex

• σ ∈ K, τ ∈ σ ⇒ τ ∈ K

• ∀σ, τ ∈ K, either σ ∩ τ = ∅ or σ ∩ τ is a common face of both

Given a finite set of elements P , an abstract simplicial complex K with vertex set P is a
set of subsets of P such that:

• ∀p ∈ P, p ∈ K

• if σ ∈ K and τ ⊆ σ, then τ ∈ K

McArdle and Anderson (2001) proposed a nonparametric regression approach, based
on pairwise distances between vectors of scores on the outcome variables. Multivariate
Distance Matrix Regression (MDMR) quantifies structure in the data based on similarities
between subjects rather than similarities between variables. Distance between two vectors

of scores on a multivariate outcome is defined as the result of a function d(Y
′
i , Y

′
j ) that

quantifies the dissimilarity of the response profiles of subjects i and j, i.e. distance between
their q × 1 vectors of scores on the variables comprising Y .

Second possibility of individual equation level estimation is to use generalized Bradley-
Terry perspectives, such as Placket Luce model.

Our final estimation of the combinatorial regression coefficients in simplical complex
framework uses a simplicial complex network (SCN) perspective (Firouzi et al., 2019).

It reformulizes the regression problem using simplicial complex network:

• In case that a SCN has no hidden node (no subdivisioning process), it can be viewed
as linear regression reformulation. A real valued linear function f : ∆d → R from a
d-dimensional simplex ∆d = [vo, . . . , vd], can be specified by the values of f at each
vi. These values are represented by f(vi).

• Assume a data matrix X ∈ RN×d of N samples within ∆d, and their corresponding
output in a vector y. We formulate the linear regression problem with training a
weight w that minimizes ‖Xw − y‖22.

• Coefficients of the representation samples in X as represented as a convex combina-
tion of v0, . . . , vd in a matrix C ∈ RN×(d+1) with a rank of at most d, where i-th row
indicates the corresponding coefficients for i-th sample. Then the linear regression
problem can be reformulated as ‖Cf − y‖22 where f is a (d + 1) dimensional vector
representing the function value at vi as its i-th element. With a straightforward com-
putation, one can verify that the optimal w or f can be computed from the optimal
value of the other one.
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3 Properties of the estimation approach for
Jensen-Shannon divergence measure

We present results of simulation study using Jensen-Shannon divergence measure as the
basis for the construction of the estimators.

The Jensen-Shannon divergence (JSD) M1
+(A) ×M1

+(A) → [0,∞) is a symmetrized
and smoothed version of the Kullback-Leibler divergence D(P ∈ Q). It is defined by:
JSD(P ∈ Q) = 1

2
D(P ∈M) + 1

2
D(Q ∈M) where M = 1

2
(P +Q).

Figure 1 presents the results of two simulations, where the data generating process
has been constructed for a full combinatorial set of 4-tuplets (left) and 8-tuplets (right).
Interestingly, for the used data generating processes, generalized Bradley-Terry based
estimation approach seems as the most consistent and best performing.

Figure 1: Results of Monte Carlo simulation for two different data generating processes

Source: Own calculations.

4 Conclusion

We present a new and unexplored regression perspective, to our knowledge second one on
simplicial complexes, opening up vast area for future research with most of the options
the approach provides still unexplored, for example:

• Statistical criteria for the selection of combinations to be included in the combinato-
rial regression analysis and model fit criteria

• Parametric, semi- and nonparametric perspectives

• Combinations with other approaches in mathematical statistics and econometrics,
for example Bayesian approaches, causal inference, additional combinations with
machine learning methods

• Probabilistic perspectives: stochastic processes on simplicial complexes (lattice mod-
els, e.g. Ising)

• Extension of the perspectives from algebraic topology and algebraic statistics - re-
gression models on other topological objects (Vietoris-Rips and Cech complexes,
matroids, greedoids)
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Abstract: One of the key components of a bridge management system (BMS) is the
deterioration model, whose accuracy will determine the quality of future maintenance,
rehabilitation and replacement (MR&R) decisions. The current state of the art for de-
terioration models in commercial BMS is the application of Markov chains to determine
the probability of transitioning between condition states (CS). However, in recent years
research has moved to looking at alternative approaches due to the assumption of a con-
stant bridge population and stationary transition probabilities. This can compromise the
efficacy of the deterioration model for predicting deterioration of complex aging bridge
structures. This research focuses on the application of survival analysis where the survival
time is the time spent in each CS and the ‘failure’ is the transition of the bridge condition
to a worse state. Bridge condition states are measured on an ordinal or numerical scale,
common examples range from 1-4 or 0-100 for the UK standardised bridge condition index
(BCI). This paper presents the application of survival analysis to establish environmental
controls and explores the comprehensive assessment of the utilisation of the Cox Propor-
tional Hazards (PH) model. Expanding on the authors previous research which applied
survival techniques to identify bridge performance indicators, this research uses live bridge
condition data from Northern Ireland, based on over 6000 bridges which form the strategic
and regional road network.

Keywords: survival analysis, bridge management systems, Markov chains, deterioration
modelling

AMS subject classification: 62N03

1 Introduction

The public road network in Northern Ireland (NI) has an estimated value of £26billion
which makes it NI’s most valuable capital asset. This road network contains 6978 bridges of
which approximately 6000 bridges meet the criteria to require regular inspections. Bridges
are subject to regular inspections to ensure functionality and safety to users. Since the
early 1980’s, a score on an ordinal scale between 1 and 4 was given at the time of inspection
where 1 represented minimal damage and 4 indicated immediate intervention was required.

∗Corresponding author: nstevens01@qub.ac.uk
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Based on the scores for the individual elements, an overall score was awarded. This score
was then used to allocate budgets and spending. The undefined boundaries and broad
range of categories led to problems in identifying structures which were most in need of
immediate action. As a result, the introduction of a new inspection scoring mechanism
was needed. In 2015, the first inspection using the Bridge Condition Index (BCI) in NI
was conducted. With this change of inspection method resulting in a large portion of
the inspection data being in a different format, research was carried out to investigate
converting this inspection data to the new format. The process undertaken was detailed
in Stevens et al [6]. The investigation included how missing data and anomalies found in
the inspection data were handled. Converting over 17 years of inspection data into BCI
means that approximately 20 years of inspection data can be used to build deterioration
models.

This paper details an extension to work carried out in [5] where survival analysis tech-
niques were applied to bridge inspection data. This study included quantifying the effect
of four bridge characteristics on the survival in each CS. An additional three characteristics
will be investigated here. Section 2 will provide a brief literature review of bridge dete-
rioration modelling. An introduction to the data and an in-depth look at the attributes
investigated in this study will be given in Section 3 before results are presented in Section
4. Conclusions from this study will be given in Section 5.

2 Literature Review

A variety of models have been used for deterioration modelling. The current state-of-
the-art is the application of Markov models where the future condition of the bridge is
predicted by calculating the transition probabilities between states. A full review of the
literature is available in [5].

Over the years, research has advanced from Markov models due to the assumptions
made in utilising the Markov models such as constant bridge population and stationary
transition probabilities. The semi-Markov model was introduced in [3] as some of the
restrictions are relaxed. Survival analysis was first used in the calculation of transition
probabilities for a semi-Markov model [4]. In addition to this, several studies have used
survival analysis to model the time spent in each CS using the Kaplan-Meier method [1],
Cox PH [2] and the Weibull and Hypertabastic distributions [8].

3 Introduction to the Data

Preliminary analysis on the NI bridge stock was undertaken and can be seen in [7]. Key
points from that investigation were that approximately 53% of bridges have masonry arch
construction and approximately 83% have the bridge function of road over river. There
are 6978 bridges in NI with approximately 6000 bridges meeting the conditions to require
regular inspections. The results presented in [5] were based on all inspection data, therefore
including the bridges that aren’t regularly inspected. In this paper, only the inspected
bridges are included since removing the bridges which aren’t inspected at regular intervals
will lead to the removal of anomalies of larger time in CSs due to irregular times between
inspections. There are four condition states which are defined based on the BCI Average
score at the time of inspection, as shown in [5]. Each of these condition states define the
overall condition of the bridge where state 1 represents the as-new condition and state 4
represents failure of the bridge. Survival analysis was performed on the entire bridge stock
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where the survival time is the time spent in each CS and the ‘failure’ is the transition of
the bridge condition to a worse state.

In [5], several key bridge attributes including construction type, bridge function, single
span or not and road class are investigated for their impact on survival in states 1,2 and
3. In Section 4, results are presented for other characteristics such as traffic, cumulative
span and deck width (see Figure 1). Each of the graphs in Figure 1 show a right skew.
For the traffic variable, this distribution is similar to that of the different road types. For
example, motorway bridges make up 1.3% of the bridge stock and as expected the Very
High traffic category is similar with 1.8%. Since approximately 78% of bridges are single
span, the graphs shown in Figure 1(b)&(c) are as expected since the smaller the bridge
the smaller the cumulative span and deck width.

(a) Traffic (b) Cumulative Span (c) Deck Width

Figure 1: Bar charts of the bridge characteristics investigated in this paper: (a)
Traffic; (b) Cumulative Span; (c) Deck Width

4 Results

Figure 2 shows the Kaplan-Meier (KM) curves for the time spent in CS 1 stratified by 3
characteristics which indicate a possible difference in survival.

(a) Traffic (b) Cumulative Span (c) Deck Width

Figure 2: KM survival curves for the time spent in CS 1 stratified by: (a) Traffic;
(b) Cumulative Span; (c) Deck Width

In particular for the bridges where traffic is very high the survival probability is much
higher than that of the bridges with lower traffic levels. Likewise, it can be seen that
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as cumulative span and deck width increases the higher the probability of survival. The
Wald’s tests was carried out on these characteristics for state 1,2 and 3 (results are shown
in Table 1). It is apparent that there is a significant difference in the traffic, span and deck
widths for states 1 and 2. These variables are included in a Cox PH model and hazard
ratios are shown in Table 2. If the hazard ratio is equal to 1 it represents no effect on
the hazard of the event, a hazard ratio over 1 would indicate an increase in the hazard
and below 1 would indicate a decrease in the hazard. A baseline bridge has the following
characteristics: not masonry arch, not road over river, multi-span, unclassified road, low
traffic levels, cumulative span and deck width less than 5m. It is important to note that
on no occasion does the CIs for the hazard ratios include the value of 1.

State 1 State 2 State 3
Traffic 9e-14 7e-04 0.5

Cumulative Span Categories 8e-10 0.06 0.001
Deck Width Categories 7e-13 0.01 0.6

Table 1: Wald’s test p-values for each of the characteristics in CS 1,2 and 3.

Hazard Ratio CI for Hazard Ratio
Masonry Arch 1.29 [1.19,1.39]

Road Over River 1.16 [1.05, 1.28]
Road Class - Motorway 0.606 [0.378,0.973]

Table 2: A table showing a few key results from the Cox PH model.

5 Discussion and Conclusion

This paper shows the application of KM curves to determine the effect of bridge character-
istics on the time spent in each CS before deteriorating to a worse CS. From Figure 2(a), a
difference between the very high traffic levels and the other traffic levels is significant. This
difference may be due to the very high traffic levels being on motorway bridges. These
bridges are under a maintenance contract and their maintenance is very regular to ensure
safety to the users who rely on these bridges for their daily commute. Table 2 shows the
hazard ratios along with the confidence intervals. If this confidence interval contains 1
it would mean that there is no significant difference between the variable level and the
baseline. Since the confidence intervals in Table 2 do not contain the value of 1 it would
suggest that all of these results are significantly different than the baseline level. The haz-
ard ratio for Road Class Motorway (Table 2) is 0.606 suggesting that there is a decrease
in the hazard of deteriorating to a worse state from condition 1 to any worse state for a
motorway bridge compared to a bridge on an unclassified road. From the results of this
paper and [5], it can be concluded that BCI Average by itself is not sufficient to inform
decisions regarding maintenance actions. The BCI Average score is based on the overall
condition of all elements. At the time of inspection BCI Critical is also calculated, this
value describes the condition of the elements which are of very high importance to the
bridge. Therefore a point of further work would be to consider of combination the signifi-
cant variables (shown in Tables 1 and 2) along with the BCI Average and BCI Critical in
order to obtain a more better metric for informing decisions.
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Abstract: To model the growth of a bacterial population in the presence of antibiotics
we use the stochastic model from Bogdanov et al. [2]. We assume that bacterial cells
either die or duplicate, with probabilities p0(c) and p2(c), where p2(c) = 1/(1 + αcβ) for
some α, β, where c stands for the antibiotic concentration. Using measurements based
on colony counting method we obtain weakly consistent, asymptotically normal estimator
both for (α, β) and for the minimal inhibitory concentration (MIC), a relevant parameter
in pharmacology.
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1 Introduction

The correct estimation of bactericidal potency is a critical issue for the safe and proper use
of antibiotics. In Bogdanov et al. [2] we worked out a Bienaymé–Galton–Watson branch-
ing model for the growth of the bacterial population, and we obtained weakly consistent
asymptotically normal estimators for the relevant parameters when for the biological mea-
surements quantitative PCR (qPCR) method is used. In [2] we found that the 2-parameter
model fits very well to real biological data. In the present note we provide an estimator
under the same model assumptions but for different biological data: we assume that the
experimental data was obtained using colony counting method. The qPCR method mea-
sures the total bacterial genom, which is the total number of dead and alive bacterial
cells multiplied by a constant. On the other hand, colony counting gives an estimator for
the extinction probability. The basic experiment is the following. Originally, x0 bacterial
cells (e.g. Escherichia coli) are inoculated onto agar plates containing a series of antibiotic
concentration, and after the incubation period all the viable colonies are enumerated, see
e.g. Liu et al. [1].

As in [2] we assume that the bacterial population is homogeneous, in particular, there
is no resistant type. Long-term evolution of bacterial populations with both resistant and
susceptible types was investigated in several papers using deterministic models, see Svara
and Rankin [4], Paterson et al. [3], and the references therein. Closest to our model is
the deterministic model given by Liu et al. [1], where the biological measurements were
obtained by colony counting. In [1] a deterministic expression for the number of colony
forming units was obtained in terms of the antibiotic concentration.

∗Corresponding author: szalaim@math.u-szeged.hu
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Next we describe the mathematical model. We consider a simple Galton–Watson
branching process where each bacterium either dies (leaves no offspring) or divides
(leaves 2 offsprings) with respective concentration dependent probabilities p0 = p0(c) and
p2 = p2(c) = 1 − p0(c). Let f(s) = fc(s) = p0 + p2s

2 denote the offspring generating
function and m = m(c) = 2p2(c) the offspring mean if the antibiotic concentration is c.
The process starts with a single ancestor X0;c = 1, and

Xn+1;c =

Xn;c∑
i=1

ξ
(n)
i;c ,

where {ξc, ξ(n)
i;c : i ≥ 1, n ≥ 1} are independent and identically distributed (iid) random

variables with generating function fc. We further assume that the offspring distribution
is given by

p2(c) =
1

1 + αcβ
, (1)

where α > 0, β > 0 are unknown parameters. Note that as m = 2p2 this is the same
assumption as in [2]. Under this model the minimal inhibitory concentration (MIC), the
smallest antibiotic concentration preventing bacterial growth, is the smallest c for which
m(c) = 1, that is α−1/β .

If m ≤ 1 then the process dies out almost surely, while if the process is supercritical,
i.e. m > 1 then the probability of extinction is the smaller root of fc(q) = q, which is in
our setup

q(c) =

{
1−p2(c)
p2(c)

, if p2(c) > 1/2,

1, if p2(c) ≤ 1/2.
(2)

2 Estimation of the parameters

Assume that the initial number of bacterial cells is x0, that is we observe x0 independent
copies of the Galton–Watson process (Xn;c). Then the number Yc of living colonies has
binomial distribution with parameters x0 and 1 − q(c). Therefore, the natural estimator
for q(c) is q̂(c) = 1− Yc

x0
. The law of large numbers and the central limit theorem implies

that q̂(c) is a weakly consistent estimator and as x0 →∞
√
x0√

q(c)(1− q(c))
(q̂(c)− q(c)) D−→ N (0, 1), (3)

where
D−→ stands for convergence in distribution.

From (2) we see that we can estimate p2(c) only if q(c) < 1, or equivalently m(c) > 1,
in which case

p̂2(c) =
1

1 + q̂(c)
. (4)

We assume that the offspring mean as a function of c satisfies (1) for some unknown
parameters α > 0, β > 0. Rewriting (1)

logα+ β log c = log

(
1

p2(c)
− 1

)
.
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Assume that we have measurements for K ≥ 2 different concentrations c1 < c2 < . . . < cK ,
such that m(cK) > 1. As in (4), we obtain the estimator p̂2(ci) at different concentrations,
from which, using simple least squares estimator we obtain the estimator

β̂ =
K
∑K
i=1 fi`i −

∑K
i=1 fiL1

KL2 − L2
1

,

α̂ = exp

{∑K
i=1 fi − β̂L1

K

}
,

where to ease notation we write

fi = log

(
1

p̂2(ci)
− 1

)
, `i = log ci,

and L1 =
∑K
i=1 `i, L2 =

∑K
i=1 `

2
i . By the Cauchy–Schwarz inequality the denominator of

β̂ is strictly positive for K ≥ 2.
Under the assumption (1) the MIC equals ϑ = α−1/β , therefore its natural estimator

is
ϑ̂ = α̂−1/β̂ .

Using (3), as in [2] we can prove that these estimators are asymptotically normal. Introduce
the notation

ki =
p2(ci)

1− p2(ci)

√
q(ci)(1− q(ci)), i = 1, 2, . . . ,K.

Proposition 1. Assume that c1 < . . . < cK are given concentrations such that m(cK) >

1. Then as x0 → ∞, α̂, β̂, and ϑ̂ are weakly consistent estimators of the corresponding
quantities. Furthermore, as x0 →∞

√
x0(α̂− α, β̂ − β)

D−→ (U, V ),

where (U, V ) is a two-dimensional normal random vector with mean 0 and covariance

matrix

(
σ2
α σαβ

σαβ σ2
β

)
, where

σ2
α =

α2

(KL2 − L2
1)2

K∑
i=1

k2
i (L2 − L1`i)

2,

σαβ =
α

(KL2 − L2
1)2

K∑
i=1

k2
i (K`i − L1)(L2 − L1`i),

σ2
β =

1

(KL2 − L2
1)2

K∑
i=1

k2
i (K`i − L1)2 ,

and
√
x0(ϑ̂− ϑ)

D−→ N (0, σ2
ϑ) as x0 →∞, with

σ2
ϑ =

ϑ2 (logα)2

β2(KL2 − L2
1)2

K∑
i=1

k2
i

(
L2 − L1`i

logα
− K`i − L1

β

)2

.
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3 Simulation study

If m(cK) > 1, then regardless of the fixed values c = (c1, . . . , cK) the estimate (α̂, β̂)
is weakly consistent and asymptotically normal as x0 → ∞. However, the asymptotic
variances in Proposition 1 do depend on the specific choice of K ≥ 2 and the values
c1 < . . . < cK . Intuitively, it is clear that we should choose values for the concentrations
where the derivative of m is large, that is m is close to 1, see Figure 1.

Figure 1: m(c) in a logarithmic scale (solid (α, β) = (10, 1), dashed (α, β) = (100, 2))

As in [2] we compare two rather different biologically relevant scenarios: (α, β) = (10, 1)
and (α, β) = (100, 2). In Figure 1 we see the mean function for these two cases. Note
that in both cases ϑ = 0.1. Table 1 contains the theoretical variances given in Proposition
1 for different choices of the concentrations. For the steeper function ((α, β) = (100, 2))
the variances of α and β are significantly larger, however the variance of the MIC is of
the same order. We also see that a wrong choice of the concentrations might result much
larger variations. For c3 all the concentrations are small, the antibiotic does not have any
effect, so we cannot make a good estimate from observations at these concentrations.

concentrations σ2
10 σ2

1 σ2
0.1 σ2

100 σ2
2 σ2

0.1

c1 = (2−7, 2−4) 2424 2.87 0.015 2.98 · 106 38 0.0027
c2 = (2−5, 2−4.5, 2−3.4) 875 1.36 0.0016 3.54 · 105 5.5 0.0014
c3 = (2−9, 2−8, 2−7) 8.99 · 104 32 2.89 3.84 · 108 1448 29

Table 1: Asymptotic variances for (α, β) = (10, 1) and (α, β) = (100, 2).

Choosing the right antibiotic concentration is important to get a good estimate. The
larger variances above are not surprising, because in the present setup the estimator for the
mean m(c) works only for supercritical processes, that is for those c, for which m(c) > 1.
That is we can sample only from the upper part of the mean function m(c) in Figure 1.
This is in sharp contrast to the situation treated in [2], where the total number of dead
and alive bacteria was counted, and the estimator for the mean works for any c.
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x0 α β ϑ σ̂2
α σ̂α,β σ̂2

β σ̂2
ϑ

50 11.25 1.01 0.101 1464 41 1.3 0.002
100 10.79 1.01 0.1004 1349 43 1.48 0.0019
300 10.23 1.003 0.1 981 36.2 1.44 0.0018
500 10.17 1.003 0.1 931 34.9 1.34 0.0016
∞ 10 1 0.1 875 34 1.36 0.0017

Table 2: Empirical mean and variances for (α, β) = (10, 1).

With α = 10, β = 1 and concentration vector c2 we simulate the process as follows.
For a given concentration ck, k = 1, . . . ,K, we calculate p2(ck) from (1). From each

measurement we calculate the estimation (α̂, β̂) as described in (2). We simulated the

measurements 1000 times. The resulting means and empirical variances of
√
x0(α̂−α, β̂−β)

and
√
x0(ϑ̂−ϑ) are given in Table 2. We see that even for small initial number of bacteria

the empirical variances are close to the theoretical counterparts.
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Abstract: The blended generalised extreme value (bGEV) distribution has been pro-
posed as an alternative to the generalised extreme value (GEV) distribution for modelling
block maxima. Simulation studies are performed to analyse the performance of the bGEV
distribution when the data follow the GEV distribution. We propose a new hierarchical
two-step model for block maxima that borrows strength from the peaks over threshold
method for less wasteful inference. Simulation studies are implemented to evaluate the
performance of the two-step model. We find that the bGEV distribution is a promising
alternative to the GEV distribution when modelling block maxima, and that the two-step
model is able to improve inference by using more information from the available data.

Keywords: Extreme value theory, bGEV, INLA
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1 Introduction

A well-known method to accurately estimate high quantiles is based on the so-called block
maxima approach. The generalised extreme value (GEV) distribution is the only non-
degenerate limit distribution of a standardised block maximum, meaning that it can be
used as a model for the maximum of a large block of random variables [3]. Unfortunately,
inference with the GEV distribution is somewhat wasteful, as only one observation per
block is kept for analysis. Moreover, the GEV support depends on its parameters, which
makes inference unstable and introduces artificial boundary restrictions on the data. This
is particularly problematic in a covariate-dependent setting, which is common when deal-
ing with spatially distributed data. In such frameworks, flexible modelling is usually
introduced by allowing the model’s parameters to vary according to the values of covari-
ates [4]. The restrictive amount of data usually available using the block maxima approach
makes it challenging to introduce complex models on multiple parameters. To cope with
these issues, we propose a two-step approach that models the scale parameter of the GEV
distribution using the peaks over threshold method, which, in some cases, uses extreme
observations more efficiently than block-maxima. It has been suggested that the peaks
over threshold technique is preferable over block maxima when the interest is in quan-
tile estimation [1]. The opposite holds if the interest is in estimating return levels. By
borrowing strength between both methods, we take advantage of the merits and improve

∗Corresponding author: silius.m.vandeskog@ntnu.no
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the pitfalls of both methods, thus allowing for less wasteful and more stable inference.
For inference over block maxima data, we use the blended GEV (bGEV) distribution,
recently proposed as an alternative to the GEV when the tail parameter is positive [2].
The bGEV distribution has infinite support and therefore avoids problems arising from
parameter-dependent supports.

The main aims of this paper are to 1) test the performance of the bGEV in a simulation
study to understand its properties, and 2) show the advantages of borrowing strength
between the block maxima and the peaks over threshold approaches. Our proposed model
belongs to the class of latent Gaussian models and therefore can be implemented using the
R-INLA package [6], which allows fast and accurate inference. The remainder of the article
is organised as follows. In Section 2 we provide details of the bGEV distribution, while in
Section 3 we derive our two-step modelling approach. Section 4 presents the results of our
simulation study. Conclusions are given in Section 5.

2 The bGEV distribution

The GEV distribution function is

F (x;µ, σ, ξ) = exp{−(1 + ξ(x− µ)/σ)
−1/ξ
+ },

with (a)+ = max(0, a) [3], which means that the support of F depends on its parameters.
The bGEV distribution has been proposed as an alternative to the GEV when ξ ≥ 0 [2].
It is defined as

H(x;µ, σ, ξ, a, b) = F (x;µ, σ, ξ)p(x;a,b)G(x; µ̃, σ̃)1−p(x;a,b), (1)

where F is a GEV distribution with ξ ≥ 0, G is a Gumbel distribution and the weight
function p(x; a, b) is the distribution function of a beta distribution that is zero for x ≤ a
and one for x ≥ b. The parameters (µ̃, σ̃) are injective functions of (µ, σ, ξ) that guarantee
continuity in (1). The main advantage of the bGEV distribution is that it has infinite
support, thus simplifying inference by not introducing artificial boundary restrictions.
See [2] for more details about the distribution.

3 The two-step model

Let yi(s) denote the ith block maximum at location s ∈ S, where S is the area of interest.
Assume that yi(s) follows a bGEV distribution with parameters (µ(s), σ(s), ξ). It is
a common approach to let µ and σ vary in space while ξ is left constant to simplify
inference [4]. In data-sparse situations, a large observation at a single location can be
explained by a large tail parameter or a large scale parameter. In practice, if the model on
σ(s) is complex, this might cause identifiability issues between σ(s) and ξ even though the
parameters are identifiable in theory. To put a flexible model on the scale while avoiding
any identifiability issues, we propose a two-step procedure that consists of first modelling
σ(s) using peaks over threshold data. Then the estimated σ(s) is used to standardise the
block maxima and fit a bGEV distribution where both scale and shape parameters are
constant in space.

It is known that, for some large enough threshold u(s), the distribution of an obser-
vation larger than u(s) is given by a generalised Pareto distribution with tail parameter
ξ and scale parameter σ̃(s) = σ(s) + ξ(u(s) − µ(s)) [3]. We assume that the difference
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u(s) − µ(s) is proportional to the scale parameter σ(s), since the tail parameter is con-
stant. This assumption leads to a proportionality between the scale σ(s) and the standard
deviation of all observations larger than the threshold u(s). Consequently, it is possible
to model the spatial structure of the scale parameter independently of the location and
tail parameter. Denote σ(s) = σ∗0 · σ∗(s), with σ∗0 a standardising constant and σ∗(s) the
standard deviation of all observations larger than u(s) at location s. Dividing the block
maxima by σ∗(s) gives

y∗i (s) = yi(s)/σ
∗(s) ∼ bGEV(µ∗(s), σ∗0 , ξ), (2)

where µ∗(s) = µ(s)/σ∗(s). Inference is considerably easier when modelling (µ∗(s), σ∗0 , ξ)
instead of (µ(s), σ(s), ξ), since both σ∗0 and ξ are constants.

4 Simulation studies

The bGEV distribution

The performance of the bGEV distribution is evaluated when the true distribution of the
data is a GEV distribution. We draw n ∈ {10, 50, 100, 500, . . . , 10000} samples from a GEV
distribution with parameters (µi, σi, ξi), i = 1, 2, . . . , 500. Inference is performed using
R-INLA. Point and interval estimates are provided for the GEV parameters and for different
return levels. Point estimates are evaluated using the mean squared error (MSE). Coverage
probabilities for the 95% credible intervals are displayed in Table 1. For small values of n,
the interval estimates of the bGEV distribution correspond well with the true values from
the GEV distribution. However, as n increases, the coverage probabilities deviates away
from 95%. We find that the bGEV distribution tends to overestimate the tail parameter
and underestimate the scale parameter of the GEV distribution. This is not surprising
as we expect a misspecification error from using an incorrect likelihood. However, in
a real-world setting, it is extremely rare to observe 1000 or more block maxima. The
block maxima are also not perfectly GEV distributed, as the blocks must be of finite size.
Consequently, misspecification error will also be present when using the GEV distribution
for modelling block maxima.

The logarithm of the MSE is displayed in Table 2. It seems to decrease almost linearly
with the logarithm of n. This means that the point estimates are getting closer to the
truth even though the interval estimates are not entirely correct. The results indicate
that the bGEV distribution can be a viable alternative to the GEV for modelling block
maxima.

Table 1: Estimated probability of covering the true GEV parameters and return
levels inside the 95% credible intervals of the bGEV distribution. The T block
return level is displayed as “RT”.

n µ σ ξ R10 R50 R100 R500

50 92.4% 92.4% 85.0% 88.9% 86.8% 85.0% 86.0%
100 93.4% 92.2% 92.2% 91.8% 91.2% 92.0% 92.0%
1000 96.4% 89.2% 94.8% 94.0% 95.6% 96.0% 96.0%
10000 99.8% 47.3% 65.5% 95.4% 93.8% 90.4% 85.8%
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Table 2: Log-MSE between the true GEV parameters and return levels and those
estimated with the bGEV distribution. The T block return level is displayed as
“RT”.

n µ σ ξ R10 R50 R100 R500

100 0.84 0.49 −4.59 3.23 5.27 6.87 7.84
1000 −1.53 −1.72 −6.59 1.05 3.32 5.08 6.16
10000 −3.27 −2.97 −7.91 −1.17 1.36 3.49 4.73

The two-step model

We simulate 250 locations si, i = 1, . . . , 250, together with k spatially varying covariates
x(s). At each location s, we draw 24 · 365 · n(s) observations from a Fréchet distribution
with parameters µ, ξ and σ(s) = exp(x(s)Tβ), which represents n(s) years of hourly
observations. The numbers n(s) are drawn randomly so the total number of block maxima
is
∑250
i=1 n(si) = 1500. Block maxima are then computed at all locations. We use 200

locations for parameter estimation and the remaining 50 as test data. This simulation
procedure is repeated 300 times. Each time, the number of covariates k is drawn randomly
between 1 and 4, and the values of x(s), β, µ and ξ are changed. For estimation of
σ∗(s), the threshold u(s) is set equal to the 80% empirical quantile of all observations at
location s. We place a linear Gaussian model on log(σ∗(s)) for estimation at locations
with no available observations. Uncertainty is propagated by drawing 100 samples from
the posterior of log(σ∗(s)), and estimating (µ∗(s), σ∗0 , σ) for each of the 100 samples. The
two-step model is compared with a model where all bGEV parameters are estimated jointly
(the joint model henceforth), using R-INLA. Comparison is performed with the expected
value of the threshold weighted continuous ranked probability score (twCRPS, [5]) with a
quantile weight function w(p) = I(p ≥ 0.9), meaning that we only focus on the performance
in the right tail.

The mean expected twCRPS over all 300 trials for the joint model is 0.9572 while
the two-step model achieves a mean score of 0.9570. This difference might not seem
considerable, but non-parametric bootstrapping shows that the difference between the
two-step twCRPS and the joint twCRPS is significantly different from zero at a 5% level.
This is an impressive result because the data in this simulation study is drawn directly
from the joint model, and one would therefore expect it to perform well. The fact that the
two-step model is able to perform better shows that the peaks over threshold data can be
used for improving inference for the block maxima method. Comparing the two models in
a more complex setting is difficult, as R-INLA is unable to place more flexible models on
the scale parameter of the joint model.

5 Conclusion

The bGEV distribution allows for faster and simpler inference than the GEV distribution,
and performs well in estimating GEV parameters and return levels when little data is
available. Interval estimates are not correct because of misspecification error, but this will
also be present for the GEV distribution in a real-world setting with finite block sizes.

The two-step model allows for less wasteful and more stable inference in situations
where little data is available, and one aims to place a complex model on the scale parameter.
Even in a simple setting where the log-scale is a linear combination of covariates, the two-
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step model is able to improve the prediction skill over the joint model. We expect the
performance improvement to be even more considerable as the complexity of the scale
parameter increases.
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Abstract: We give a methodological framework for the case of dependent super-
imposed binary Markov chains. The superposition may not be directly observable, in
a Hidden Markov model (HMM) sense. For that purpose, we introduce a class of multidi-
mensional Markov chains where full recovery of the dependency structure is possible. One
of the properties this class will have is that the “sum” process is again Markov. This allow
us to use standard tools for HMM estimation with some modifications.
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1 Introduction

HMMs are a widely used tool for the modeling of non directly observable Markov chains,
for example to model current recordings of ion channels in the cell [3]. Recently, there is a
growing interest in the multivariate case [2]. Note that if the entries of Xk are independent,
the problem can be solved with standard tools [5]. However, the situation becomes more
complex once independence can not be assumed and the complete multidimensional vector
is not observable. This becomes even harder when only the superposition of signals can
be detected. In an application analyzed in [7], we find the need to model such a situation,
where only the total measure of a piece of membrane with multiple dependent ion channels
can be captured.

2 Setting

Let X(1), . . . , X(`) be ` homogeneous binary Markov chains (i.e., the state space is {0, 1})
that are defined on a common probability space (Ω,F ,P). Define an `-dimensional ho-

mogeneous Markov chain (Xk)k∈N with Xk = (X
(1)
k , . . . , X

(`)
k )T . Note that the ` binary

Markov chains may not be independent, and, therefore, the structure of the transition ma-

trix M ∈ R2`×2` of the multidimensional chain encodes the dependency structure between
the binary chains. This matrix will be an object of interest in this paper.

∗Corresponding author: ljulava@mathematik.uni-goettingen.de
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Moreover, we assume that only the superposition of the individual Markov chains can
be observed. Therefore, our main object of interest is the “sum” process (Sk)k∈N on the
finite state space [` ] := {0, . . . , `} given by

Sk :=
∑̀
j=1

X
(j)
k .

This process may be interesting for some applications due to the fact that it can be inter-
preted as counting how many ones are in a given time point k ∈ N in a multidimensional
chain.

Note that the only by observing a path of (Sk)k∈N it is generally not possible to
recover the individual paths of . Even worse, due to the dependency between the chains,
the process (Sk)k∈N may not necessarily be a Markov chain itself. This will be explored
in Section 3.

Moreover, assume that the sum process (Sk)k∈N is itself not observable and can be
modeled as a HMM with observable sequence (Yk)k∈N. For example through Gaussian
noise with mean and variance depending on the sum,

Yk = µ(Sk) + σ(Sk)ξ, k ∈ N,

for a standard normally distributed real-valued random variable ξ, µ(Sk) ∈ R, and σ(Sk) ∈
(0,∞) for k ∈ N.

The aim of this paper is to provide a methodological framework to estimate the tran-
sition matrix M of the multidimensional process (and therefore the dependency structure
of the binary chains) given observations (Yk)k∈N as described before. To do this, we first
introduce a set of properties to ensure that the sum process is a Markov chain and that M
can be identified from the transition matrix of (Sk)k∈N (Section 3). Then, we describe how
to estimate M from observations (Yk)k∈N by modifying standard tools for HMMs (Section
3).

3 Methodological framework

As we mentioned before, due to the dependency between the binary chains, the process
(Sk)k∈N may not be a Markov chain. However, the lumping property is a sufficient condition
on the multidimensional process to ensure that the sum is again Markovian (see [6]).

Definition 1 (Lumping property). We say that satisfies the lumping property if for any

k ∈ N, j ∈ {1, . . . , `} and x, y ∈ {0, 1}` such that
∑`
i=1 xi =

∑`
i=1 yi, it holds

P(Sk+1 = j | Xk = x) = P(Sk+1 = j | Xk = y),

whenever P(Xk = y) · P(Xk = x) > 0.

If has this property, then we can modify standard HMM tools, such as the Baum-Welch
algorithm, to estimate the transition matrix of (Sk)k∈N from observations (Yk)k∈N.

VND Markov Chains

We start by defining a class of Markov chains that fulfill the lumping property. This class
may seem abstract at first, however, we provide an easy equivalent characterization that
show its intuitiveness and practical applications. For x ∈ {0, 1}`, let x = (x(1), . . . , x(`))T

and define the 1-norm by ‖x‖1 :=
∑`
i=1 |x

(i)|.
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Definition 2 (Vector Norm Dependency). A multidimensional Markov chain on {0, 1}`

with transition matrix M (VND) = (m
(VND)
x,y )x,y∈{0,1}` is called vector norm dependent

(VND) if for all i ∈ {1, . . . , `}, r ∈ [` ], k ∈ N0 and b ∈ {0, 1}, the expression

P
(
X

(i)
k+1 = b | X(i)

k = b, ‖Xk‖1 = r
)

(1)

is independent of i and k and

m(VND)
x,y =

∏̀
i=1

P
(
X

(i)
k+1 = y(i) | X(i)

k = x(i), ‖Xk‖1 = ‖x‖1
)
, (2)

for any x = (x(1), . . . , x(`))T and y = (y(1), . . . , y(`))T with x, y ∈ {0, 1}`.

From Definition 2 we can easily observe that the transition matrix M (VND) is deter-
mined by 2` parameters, which is a significant reduction from the 22` of the general case.
To understand the logic behind this class of Markov chains, we introduce two properties.

Definition 3 (Permutation invariance). We call a vector Markov chain permutation
invariant if for any k ∈ N, x, y ∈ {0, 1}`, and any permutation matrix P ∈ {0, 1}`×`, it
holds

P(Xk+1 = y | Xk = x) = P(Xk+1 = Py | Xk = Px).

Note that a Markov chain that has the permutation invariance property, has also the
lumping property. In practical terms, this property says that we can relabel the binary
chains without changing the permutation matrix M .

Definition 4 (Conditional independence). We call conditionally independent (w.r.t. the
past), if

P(Xk+1 = y | Xk = x) =
∏̀
i=1

P(X
(i)
k+1 = y(i) | Xk = x),

for any k ∈ N0 and for all x, y ∈ where y = (y(1), . . . , y(`))T .

This property says that the dependency between channels is not instantaneous but is
only possible through the state at the previous time point. With this two properties, we
can state the characterization theorem for VND Markov chains.

Theorem 1 (Characterization of VND Markov chains). For a vector Markov chain as-
sume that the initial distribution is permutation invariant. Then, the following statements
are equivalent:

1. The Markov chain is vector norm dependent;

2. The Markov chain is permutation invariant and conditional independent.

This characterization provides a more intuitive and practical way of thinking about
VND Markov chains and when to apply this framework in real data applications. Moreover,
in [7], we show that for a VND Markov chain model with corresponding transition matrix

M (VND), we can essentially uniquely recoverM (VND) from the transition matrix of (Sk)k∈N.
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VND in a HMM setting

Let the measurable space (Ω,F) be equipped with a family of probability measures
(Pθ)θ∈Θ, where Θ ⊆ Rd for some d ∈ N. Let ` ∈ N and (Sk, Yk)k∈N be a bivariate
stochastic process as described in Section 2, such that (Yk)k∈N, conditioned on (Sk)k∈N,
is a real-valued, independent sequence of random variables. We say that (Sk, Yk)k∈N is a
(homogeneous) VND-HMM if addtionaly (Sk)k∈N comes from a VND Markov chain.

Since VND Markov chains are permutation invariant, and therefore, fulfill the lumping
property, (Sk)k∈N is a Markov chain. Let Q be the transition matrix of the sum process
(Sk)k∈N. Then, we can use the Baum-Welch algorithm [1] to estimate Q. Moreover, this
algorithm can be modified so we include the parametrization of Q with respect to the 2`
parameters as in (1).

We provide a brief discussion of the algorithm. Let s1:K ∈ {1, . . . , `}K and y1:K ∈ RK

be the paths of (Sk)k=1,...,K and (Yk)k=1,...,K respectively. We assume that the emission
distribution belongs to a parametric class determined by densities {gθ}ΘE . The complete
log-likelihood function is given by

`(θ, s1:K , y1:K) = log π(s1) +

K−1∑
k=1

log q(VND)
sk,sk+1

(θH) +

K∑
k=1

log gθE (yk, sk). (3)

for parameters θ = (θH , θE) ∈ Θ that parametrize the transition matrix Q and the emission
distribution gθE respectively. Note that only in the second term of (3) the parametrized

components of the transition matrix Q(VND)(θH) appear, in contrast to the general case.
This log-likelihood function can be used to implement a Expectation-Maximization kind
of algorithm. However, in contrast to classical cases, the maximization step does not
have a closed form, and we use instead a least squares approximation. This is due to the
convoluted form of the parametrization of Q(see [7]).

The implementation of an R package for simulation and estimation in the VND model
can be found at https://github.com/ljvanegas/VND.

4 Conclusion and Application

This framework can be applied to multiple applications where we have super-imposed
binary chains, meaning that we only get a chance to see the number of ”ones”. As long
as this Markov chains fulfill the permutation invariance and conditional independence
properties, we can recover the original dependency structure. Moreover, if there is noise
on top in a HMM way (for example by summing Gaussian noise), a implemented algorithm
gives us a good estimate of the structural properties of the Markov chains. In [7], we apply
this framework to real data obtained from ion channels in cardiac cells.
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1 Introduction

The European Union Statistics on Income and Living Conditions project (EU-SILC, [3])
is an instrument with the goal to collect timely and comparable cross-sectional and longi-
tudinal multidimensional data on income, poverty, social exclusion and living conditions.
Data are obtained via questionnaires leading to outcome variables of diverse nature: nu-
meric (e.g., income), binary (e.g., affordability of paying unexpected expenses) and ordinal
(e.g., level of ability to make ends meet). It is our primary aim to use such longitudinally
gathered outcomes towards segmentation of households according to typical patterns of
their temporal evolution.

To this end, we propose a statistical model capable of joint modelling of longitudinal
outcomes of diverse nature (numeric, binary, ordinal) while taking potential dependencies
among different outcomes obtained at each occasion into account. Consequently, we use the
model within a Bayesian model based clustering (MBC) procedure to perform unsupervised
clustering of study units (households) into groups whose characteristics are not known in
advance. Finally, we present some of the results of use of this methodology on the Czech
subset of the EU-SILC dataset.

2 Joint model for mixed type longitudinal data

Let all the outcomes associated with unit (household) i = 1, . . . , n denote by Yi con-
sisting of Y rij , j = 1, . . . , ni, r = 1, . . . , R, that stands for jth observation of outcome r.

∗Corresponding author: vavraj@karlin.mff.cuni.cz
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Throughout the whole paper we will model the distribution of outcomes given a set of
covariates (time, level of urbanisation, . . . ), which accompanies each individual obser-
vation. Specifically, we suppose that the distribution of Y rij depends on the predictor

ηrij = X>ijrβr + Z>ijrb
r
i consisting of a fixed part X>ijrβr and a random part Z>ijrb

r
i , where

Xijr and Zijr are formed from available covariates and their structure may differ across all
r = 1, . . . , R. Parameter βr then denotes fixed effects for outcome r while bri , i = 1, . . . , n
are (random) coefficients specific for each unit.

If the rth longitudinal outcome is of either ordinal (of Lr categories) or binary (Lr = 2)
nature, we take a natural thresholding approach (see [2]) and assume each Y rij to be
determined by corresponding latent continuous variable Y ?,rij . Falling into one of the
intervals given by the set of ordered thresholds γr : −∞ = γr0 < γr1 < · · · < γrLr = ∞,
that is, γrl−1 < Y ?,rij ≤ γ

r
l , is equivalent to attaining category l = 1, . . . , Lr by the observed

Y rij . We fix the first γr1 for identifiability purposes, in particular, binary outcomes do not
require estimation of any thresholds.

In case of numeric outcome r we also introduce the notation Y ?,rij = Y rij , so that

Y ?,rij now represents numeric (but possibly latent) value for any r = 1, . . . , R. For each

Y ?,rij we then suppose classical linear mixed model (LMM, Laird and Ware [5]), that is,

Y ?,rij

∣∣bri ∼ N
(
ηrij , τ

−1
r

)
independently for all r, i, j, where τr is the precision parameter

(reciprocal of variance) of normal distribution for rth outcome, which had to be fixed in
case of categorical outcomes for identifiability purposes.

We stand by the classical assumption of centered normal distribution for the random
effects, however, we first create a collection bi of all random effects, i.e. bi = {bri , r =
1, . . . , R}. By assumption of centered multivariate normal distribution with a completely
general covariance matrix Σ for bi independently for all i = 1, . . . , n we incorporate
possible dependencies among the outcomes into our model since the distribution of Y?

i

unconditioned by bi loses its independence structure. Nevertheless, we still can take
advantage of the independence structure while conditioning by bi in the estimation process.

3 Model Based Clustering

Banfield and Raftery [1] were first to introduce the method of Model Based Clustering
(MBC) that in general searches for G mutually distinguishable groups members of which
share the same characteristics of observed outcomes. In particular, assume a probability
distribution for outcomes Yi within gth cluster described by a probability density function
h(Yi; ψ

g) depending on an unknown set of parameters ψg. Then the overall distribution

of Yi is given by a mixture f(Yi; θ) =
∑G
g=1 wg · h(Yi; ψ

g), where θ stands for the
set of all unknown parameters ψg and marginal cluster probabilities 0 < wg < 1, g =
1, . . . , G,w1 + · · ·+ wG = 1.

The model for Yi from previous section is described by a collection of unknown pa-
rameters ψ = {βr, τr,γr,Σ; r = 1, . . . , R}. The corresponding probability distribution
function originates from integrating all latent random variables (Y?

i and bi) out of their
joint distribution:

h(Yi; ψ) =

∫ ∫
t(Yi|Y?

i )︸ ︷︷ ︸
thresholding

· p(Y?
i |bi)︸ ︷︷ ︸

LMM

· p(bi)︸ ︷︷ ︸
N(0,Σ)

dbidY?
i . (1)

Each cluster then falls into the same family of probability distributions and is dis-
tinguished by a different set of ψg parameters. If all parameters are cluster-specific,
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θ = {wg,βgr , τgr ,γgr ,Σg; g = 1, . . . , G, r = 1, . . . , R} denotes the final set of all unknown
parameters in our model.

We can decompose the mixture distribution f into the conditional distribution given
cluster h(Yi; ψ

g) and the marginal distribution of belonging to one of the groups, which
is described by P (Ui = g) = wg, where Ui are cluster allocation indicators that take value
g in {1, . . . , G} whenever the ith unit falls into cluster g. Using Bayes theorem we obtain
the probability of falling into a cluster given the data we have at our disposal:

P (Ui = g|Yi; θ) ∝ wg · h(Yi; ψ
g), (2)

which in our case involves the double integration (1). Random effects bi can be integrated
out relatively easily due to the assumption of normal distribution over both latent outcomes
and random effects. Then the part corresponding to observed numeric outcomes survives
the other integration, while the rest remains and leads to the truncated multivariate normal
probabilities. Their computation for higher dimension, which in our case is a product of
ni and the number of considered categorical outcomes, becomes problematic and is solved
numerically using algorithm by Genz [4].

Due to the complexity of our model, traditional methods like maximum likelihood
would be problematic to perform. Fortunately, our model can be easily translated to
a Bayesian setting by assigning some uninformative prior over each element of θ. The
inference about θ is then based on its posterior distribution where we enrich the prior by
the information provided by the observed data. Despite the natural choice of distributions
we are not able to express the posterior distribution in a closed form, hence we need to
resort to Markov Chain Monte Carlo (MCMC) methods.

By suitable choice of the prior distributions we ensure that the full-conditional dis-
tributions of each of the parameters or latent elements fall into well-known families, and
hence are easily to be sampled from. This allows us to follow Gibbs sampling scheme where
we sample each parameter from its full-conditional distribution given the last known val-
ues of other parameters. Generated values of θ are used for estimation of the posterior
distribution of individual parameters as well as the clustering probabilities (2).

4 Application

EU-SILC dataset is gathered annually by a 4-year rotational panel - each year a quarter
of households is replaced by a set of new ones. Between the years 2005 and 2018 this
study followed n = 23 360 Czech households for exactly ni = 4 consecutive years. The
”Equivalised total disposable income” and the ”Lowest income to make ends meet” were
chosen as the numeric outcomes in a log-scale. The ”Financial burden of total housing
cost” and the ”Ability to make ends meet” are outcomes of 3 and 6 ordered categories,
respectively. Considered binary outcomes are Yes or No questions: ”Can you afford annu-
ally a week holiday away from home?” and ”Do you have a capacity to face unexpected
financial expenses?”.

The primary covariate - time corresponding to the year in which the household was
interviewed - was parametrized by quadratic splines with one inner knot to allow for
a change in evolution after the financial crisis. Fixed part of the predictor was extended
by the equivalised household size (number of household members weighted by age), the
highest education level attained by a member of the household (divided into 5 categories
from Primary to Tertiary), the urbanisation level of the locality (we separate the capital
city Prague from other 3 categories divided by population density) and other indicators
like the presence of a baby or a student in the household. The random part of the model
was left solely to the intercept term for each outcome.
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Selected results are depicted in Figure 1, which shows cluster-specific mean evolutions
of four chosen (latent) numeric outcomes. Here the blue cluster represents households
requiring high income to pay for their usual expenses. One way they can achieve it better
than the other two clusters is through higher levels of education. They are also more likely
to afford a week holiday abroad. However, these households struggle with housing cost the
more people live there. On the other hand, the red cluster represents the less fortunate
households probably effected by consequences of the financial crisis since estimated curves
in time begin to decline. Almost a half of the households fall into the green group of fairly
average behaviour.

5 Conclusions

In this paper, we proposed a statistical model for joint modelling of several mixed-type lon-
gitudinal outcomes, while clustering with respect to different patterns. Proposed method
was subjected to an extensive simulation study that covered different number of latent
clusters G, structures of random effects and differences among clusters. In some circum-
stances, our procedure did not quite reach the true values of underlying parameters for
low n = 100. Nevertheless, the performance of our estimators remarkably improved with
an increased number of units n, already for n = 1 000 it correctly classified more than 80%
of units in the vast majority of scenarios.

However, the proposed Gibbs sampling was inefficient for threshold parameters γr,
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Figure 1: Cluster-specific dependence of several (latent) numeric outcomes on cho-
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resulting in a very slow convergence to posterior distribution. Therefore, we started to de-
velop analogous model that uses Generalized LMM for categorical outcomes which removes
the necessity of latent numeric outcomes and allows to model even general (non-ordered)
categorical outcomes. However, we cannot make use of the conjugacy of distributions for
fixed and random effects like we did here. Therefore, in our current research we work on
overcoming this issue.
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Cournède, Paul-Henry, 107
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Larsson, Johan, 61
Lemler, Sarah, 107
Leonenko, N. N., 101

Leordeanu, Marius, 81
Lydon, Myra, 128

Makrides, Andreas, 46
Marshall, Adele H., 128
Martino, Sara, 138

Naveiro, Roi, 66
Neves, Cláudia, 117
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